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Abstract

Much of current machine learning (ML) re-
search has lost its connection to problems of
import to the larger world of science and so-
ciely. From this perspective, there exisl glar-
ing limitations in the data sets we investi-
gate, the metrics we employ for evaluation,
and the degree to which results are commu-
nicated back to their originating domains.
What changes are neceded to how we con-
duct research to increase the impact that ML
has? We present six Impact. Challenges to ex-
plicitly focus the field’s energy and attention,
and we discuss cxisting obstacles that must
be addressed. We aim to inspire ongoing dis-
cussion and focus on ML that matters.

tively solved spam email detection (Zdziarski, 2005)
and machine translation (Kochn et al., 2003), two
problems of global inporl. And so on.

And vel we still observe a prolileration of published
ML papers that cvaluate new algorithms on a handful
of isolated benchmark datla sels. Their “real world”
experiments may operate on data that originated in
the real world, but the results are rarely communicated
back to Lhe origin. Quantitalive improvements in per-
formance are rarely accompanied by an assessment of
whether those gains malter Lo the world outside of
machine learning research.

This phenomenon occurs because there 15 no
widespread emphasis, in the training of graduate stu-
denl researchers or in the review process [or submilted
papers, on connecting ML advances back to the larger
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Abstract 15,000
In recent years, significant progress has heen made in solving 10,000
challenging problems across various domains using deep re-
inforcement learning (RL). Repridducing existing work and - 0nc
. . . ~ 2000
accurately judging the improvements offered by novel meth-
ods 1s vilal o suslaining this progress. Unflortunately, repro- ' |
& this progress. L Y. TP o ~~=nananiill

ducing results for state-of-the-art deep RI. methads is seldom
straightforward. In particular, non-delerminism in standard
benchmark environments, combined with variance intrinsic
to the methods, can make reported results tough to interpret.
Without signilicance metrics and tighter standardization of
experimental reporting, it is difficult to determine whether 1m-
provemenls over the prior state-of-the-art are meaninglul. In
this paper, we investigate challenges posed by reproducibility,
proper experimenlal echniques, and reporting procedures. We
illustrate the variability in reported metrics and results when
comparing against common baselines and suggest guidelines
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Figure 1: Growth ol published reinforcement learning papers.
Shown are the number of RL-related publications (y-axis)
per year (x-axis) scraped from Google Scholar searches.

fects of random seeds or environment propertics). We inves-
tigate these sources of variance in reported results through
a representative set of experiments. For clarity, we focus
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Most progress In RL requires empirical validation

What are your goals when running a reinforcement learning experiment??

1. solve a simulator (e.g., chip design), where the optimal policy is a valuable
artefact; unlike pong!

2. SOTA on a benchmark, where the benchmark crystallizes some key
unresolved challenges & requires new algorithmic innovation!

3. Understanding intelligence/mind
4. Towards deployment in the real-world

Regardless, we want to compare algorithms carefully and scientifically as possible.



Outline

 Part 1: don't waste your time
e a case study
* yOou need more runs than you think!
* better statistical tools
o Part 2: pesky hypers
* the hyperparameter crisis in RL

» dealing with hyperparameter when you don't have a simulator



RL I1s a branch of science

Science is the study of the natural world; posing questions and seeking
answers

In RL we study computing, not the natural world!

We invent the problem setting, environment (MDP), the agent (algorithm),
and the experiment protocol

* This produces a dynamical system that we seek to understand

At the end of the day empiricists, theorists, algorithm designers are all
seeking the same thing: new insights & understanding — knowledge



High-stakes empirical research: animal learning

* Consider conducting eye-blink experiments with
rabbits (i.e., classical conditioning)

 The goal is to understand how rabbits come to
predict stimuli

 Each day the researcher must run several rabbits
through repeated trials of the experiment

 Researchers are cognizant of many important
details: lighting, how they handle the animals, not
to wear strong scents, temperature, etc



RL Is easier than animal learning!

 We completely construct the environment the agent operates in
and perfectly control the experiment protocol (robotics is different)

* \We can control and isolate sources of variation

* \We can control “genetic” differences in individual agents

* We can instrument our experiments, collecting whatever stats we deem relevant
 We can run repeated independent trials, in parallel no less!!

 We do all of this on computers many times faster than realtime—spinning up a
new experiment takes minutes



And yet poor empirical practice is common



A case study

* Objective: reproduce a result from the literature with two well-known
policy gradient algorithms



A case study

* Objective: reproduce a result from the literature with two well-known
policy gradient algorithms
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Case study findings

We could not reproduce the results using 30 runs and extensive
hyperparameter sweeping and ablation of architecture/implementation
choices



Case study findings

 We could not reproduce the results using 30 runs and extensive
hyperparameter sweeping and ablation of architecture/implementation choices

* Repo contains wrappers for two different code bases; unclear which
implementation of baseline was used

* Neither the paper nor repo specify the hyperparameters for baseline methods

* Repo code includes algorithmic components not mentioned in the paper



The MythBusters approach

* We noticed some runs were good, some terrible

* We noticed the repo includes code to search for good random seeds
. or maybe they got 5 lucky seeds

Another undocumented choice: initial exploration period
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Tuning the baseline

» Better hypers & better action selection noise

* Possible error in updating on episode cutoff —not an environment termination
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Our troubles are not for a lack of guidance

* Crash course in statistics for RL:

* A hitchhiker's guide to statistical comparisons of reinforcement learning algorithms
~Colas et al

* Dealing with hyperparameters when comparing algorithms:
* Evaluating the Performance of Reinforcement Learning Algorithms ~Jordan et al

* Insights from small scale experiments:

* Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement
learning research ~ Ceron & Castro

 Aggregating performance over multiple environments (IQM):
 Deep Reinforcement Learning at the Edge of the Statistical Precipice ~ Agarwal et al

Running good experiments is possible,
but you have to care about not wasting your own time



Outline

 Part 1: don't waste your time
e a case study
 you heed more runs than you think!
* better statistical tools
* Part 2: pesky hypers
* the hyperparameter crisis in RL

» dealing with hyperparameter when you don't have a simulator
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More data

time steps

N-step off-policy TD on Baird’s star-counterexample



It's much worse than you think

 Imagine 10,000 labs ran the same RL experiment
 Goal: rank four algorithms using as few seeds as possible

* How many seeds do you think they would need to be statistically
confident that you correctly identified the best algorithm?

* on toy problems



It's much worse than you think

Table 1: Chance of incorrect claims

3 runs
Acrobot A7%
Cartpole 7%
CliffWorld 54%

[LunarLander 16%
MountainCar 22%
PuddleWorld 18%

Andrew Patterson, Samuel Neumann, Raksha Kumaraswamy, Martha White, and Adam White (2024).
The Cross-environment Hyperparameter Setting Benchmark for Reinforcement I.earning. RL Journal.



https://rlj.cs.umass.edu/2024/papers/RLJ_RLC_2024_330.pdf

Do 1t for science!

* Scientists don't report results from a study of 3 rats! Neither should you!!

* In the natural sciences the robustness and generality of a result is
established via independent replications in followup research:

o Slightly different apparatus, individuals (rats), protocols, etc
 Eventually researchers explore variations: e.g., subspecies, tasks, ...

* \We can ensure reproducibility and explore generality much faster!



Outline

 Part 1. don't waste your time
e a case study
* yOou need more runs than you think!
* better statistical tools
* Part 2: pesky hypers
* the hyperparameter crisis in RL

» dealing with hyperparameter when you don't have a simulator



Is this a useful summary of individual agent performance?

DQN on Mountain Car
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Consider the distribution of performance

« Sarsa(A) with tile coding, on Mountain Car

3 runs

lesults compiled by F

\aksha Kumaraswamy



Performance distribution of DQN in Cartpole

mean

0 100 200 300

1. An agent is likely to balance the pole for only 35 steps
2. Less likely to balance the pole for over 250 steps
3. Very few agents balance the pole for 125 steps.



These non-normal distributions appear in the wild

» |n fact, the distribution changes continually throughout learning!

0.005 =
-150 -
0.004 - —200:~
-250
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300 =
-350
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-4100 -
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0.001 450 -
. -500
0.000 | T T T T T 1 T T 1 T T
-50C -450 -40C =350 =300 -250 =200 -15C 0 1000 2000 3000 4000 5000

Mountain Car

Results & animation due to Andy Patterson



Check your assumptions!

Confidence intervals: reflect our confidence that the true performance is within some range
* e.g., plotting the mean learning curve with standard error shading
* Given enough data, confidence range goes to zero

Often there are assumptions attached to a Cl, such as known variance or that the data
comes from a particular distribution (e.g., normal)

Does your experiment data match the assumptions? Did you even think of that? Is it valid to
estimate the variance from 3 samples?

n=3 =5 n=10 n=50

10 = 10 = 10 - jL0 —_ B —
35— T —

E 08— 08— L -
20 w— PR

(4 = 04— N — -
10— 1

-A -> -> :: ] ‘| “ J | ]

T T T T w T | T T 1 w0 1 ¢

-310 -300 -290 -280 -270 -310 -300 -2% -280 -270 -360  -340 36 380 -32

 Performance distribution

n=500 n=1000




There are other tools you can use!

 Use a Student's t interval that explicitly multiples the confidence band by
a scalar based on the number of runs

 Use bootstrap confidence intervals based on resampling your
performance data repeatedly & building an empirical distribution

~500 ~500
1 | I I | - I | I I I I | I I T
0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k

(a) a = 0.05 with Student’st  (b) a = 0.3 with Student’s t (¢c) a = 0.05 with bootstrap



But! You can be confidently incorrect!

MEAN | ---mmemer g m e Mean

-1201 -120+

Bernstein Percentile Student T Standard Bernstein Percentile Student T Standard
Bootstrap Error Bootstrap Error
(a) Confidence intervals with 10 runs. (b) Confidence intervals with 50 runs.

DQN on Puddleworld



Consider using measures that characterize variability

Tolerance intervals: percentiles of agent
performance + uncertainty factor based on
the number of runs

Not to be confused with confidence
Intervals

Episodic Return in Mountain Car (200 runs)
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Do | really need more runs???

« Common reaction: “but my agent/environment is huge and doing more
runs requires too much compute”

* Translation: | want to run an experiment that | don’t have enough
resources for, so can you just pretend with me that this result means what
| claim it does?

* Solution: only ask empirical questions for which you have the data, time
(deadlines), and compute to answer



Everything becomes more complex when
hyperparameters are involved



Untuned baselines

Misrepresenting the performance of other methods

turned DQN

« Common practice: you test your 100 W Wi
agent on a new environment (gameX) /M

0 gl My new alg

you invented. You compare your agent
to DQN on gameX. You simply use ~100
Nature DQN'’s settings for the hyper-

parameters and network architecture. —200
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. . . —300 fi W DQN

e Problem: DQN is tuned for Atari!! It will ‘L
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Untuned baselines =

00000

Misrepresenting the performance of other methods

00000

* Your new algorithm is highly tuned for gameX!

 Common reaction: “DQN works on everything”, “nobody
does that”, “it's too much compute to do that”

* One solution: Use an environment for which DQN’s
nyper-parameters have been tuned

What are other solutions to this challenge?



Key Messages

You need more runs/replications than you think
Take a statistical point of view! Think about:

e the distributions involved, how to summarize the distribution of
performance, and what assumptions you are making

Watch out for untuned baselines, best to avoid the situation altogether!

Appeal to authority fallacy: just because you saw it in a highly cited
paper doesn’t make it OK



An RL Cookbook

My lab has written a comprehensive guide to experiments in RL

* Best practices, common pitfalls, and plenty of examples & open-source
code!!

Journal of Machine Learning Research 23 (2023) 1-59 Submitted 2/23; Revised X/Y; Published X/Y

Empirical Design in Reinforcement Learning

Andrew Patterson AP3QUALBERTA.CA
Samuel Neumann SFNEUMANQUALBERTA.CA
Martha White' WHITEMQUALBERTA.CA
Adam Whitel AMWS@QUALBERTA.CA

Department of Computing Science and Alberta Machine Intelligence Instilute (Amiz)
University of Alberta, Edmonion, Canada



Outline

 Part 1. don't waste your time
e a case study
* yOou need more runs than you think!
* better statistical tools
 Part 2: pesky hypers
* the hyperparameter crisis in RL

» dealing with hyperparameter when you don't have a simulator



Hyperparameters in RL

» Consider Deep Q-learning:

* Optimization parameters: stepsize and momentum for Adam optimizer

 EXxploration parameters: initial ¢, minimum ¢, decay-schedule

 Architecture: neural network, activation function, ...
 Weight initialization: can induce optimism and exploration

 Replay parameters: buffer size, minimum buffer size, batch-size, ...



The Hyperparameter Crisis in RL

* The performance of RL agents critically depends on setting key
hyperparameters

Normalized Environment Score
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The Hyperparameter Crisis in RL

* The performance of RL agents critically depends on setting key hypers

* The proliferation of hyperparameters in RL: agents are becoming more
complex and increasingly dependent on more and more hypers
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The Hyperparameter Crisis in RL

* Jo tune these agents, designers assume:
1. Full knowledge/access to deployment setting
2. Things won't break: when testing bad hyperparameter settings

3. Tuning does not count: time spent tuning hyperparameters is not
reflected in standard evaluation pipelines

e 1 & 2 are true In simulators ...



Consider your goal

 Goal #1: want to prove your algorithm is best (SOTA)—likely impossible

 Goal #2: understand how an algorithm’s performance changes as you
vary key hyperparameters

 Goal #3: an application and you want to deploy an agent in the wild —
tuning hypers on a water treatment plant is likely infeasible



Consider your goal

 Goal #1: want to prove your algorithm is best (SOTA)—likely impossible

 (Goal #2: understand how an algorithm’s performance changes as you vary
key hyperparameters

 Goal #3: an application and you want to deploy an agent in the wild —
tuning hypers on a water treatment plant is likely infeasible
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Outline

 Part 1: don't waste your time
e a case study
* yOou need more runs than you think!
* better statistical tools
 Part 2: pesky hypers
* the hyperparameter crisis in RL

 dealing with hyperparameter when you don't have a simulator



Proposal: Calibration Models

Calibration
model
Data logs @

|||
Hyper evalua’uon

1. Learn a calibration model from data logs (approximate MDP model)

Deployment

2. Test many hyperparameters in the calibration model (the agent learns in the
calibration model as if its the real world)

3. Select best hyperparameters according to performance in calibration model

4. Deploy continual learning agent with selected hyperparameters



RL in the real world

observation, reward



RL In a calibration model

| action ‘

Agent“
L

observation, reward




Stability of the Model

 The goal is to use the Calibration model as a stand-in for the real world:

conduct many experiments with different hyperparameters, pretending agent is
iInteracting with the plant

 must remain stable when iterated many steps (5000, 500k, 5m steps)
* should produce realistic states

 Proposal: KNN model (k-nearest neighbors)



Calibration Model using a KNN approach

Essentially chaining together
observed transitions

Find k nearest neighbours:

[<S’a>] d(<s,a>,

SN

+ Maintains stability because each
transition stays within observed data

V Agent + Produces only real states and rewards

Iearn(<s,a,s’,r>)}

- Limited generalization



Insights from small experiments

* |[n low-dimensional, small simulation problems
(Acrobot, Puddleworld, Cartpole)

* Our approach is more effective than offline RL (fixed pre-trained policy)
 NN-based calibration worse than KNN-based

* Approach was effective with relatively small datasets, and different
data gathering policies

* Robust to some non-stationarity (i.e., small change to dynamics)

No More Pesky Hyperparameters: Offline Hyperparameter Tuning for RL. Transactions on Machine Learning Research 2022


https://openreview.net/pdf?id=AiOUi3440V

Does the approach work on a
real system?



The data of water treatment

A Year in Review
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Janjua, M. K., Shah, H., White, M., Miahi, E., Machado, M. C., & White, A. (2023). GVFs in the Real World: Making Predictions Online for Water Treatment. Machine Learning Journal.


https://link.springer.com/article/10.1007/s10994-023-06413-x

Building a Calibration model for water treatment

1. Take logdata from operators controlling the plant

1 week (350k samples), 480 sensor readings
(also works with 1 year of data)

2. Build a KNN-calibration model

3. Treat CM like the real world: try each HP combination many times and return
best performing

 Deployment goal: set step-size of Adam for a prediction agent



Membrane pressure timeseries

Membrane pressure

100C0 12500 000 17500 20000
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Simulating membrane pressure with a CM

Membrane pressure

Good KNN Model Rollout

00000

ieoco 1250 1 5000 17500

CM rollout (~34 mins)

fZDeponment goal: set step-size of Adam for a prediction agent

00000




Can we do better than CM
for real-world RL?

Yes! But we need to stop assuming tuning is free!

We need better algorithms: fewer hyperparamters or at
least meta learning

Better empirical practices and better test problems
are critical!
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Calibration Model using a KNN approach

Agent-environment interaction: s, dg, 1, S1, A1, 1, $9, Ay, ...



Calibration Model using a KNN approach

Agent-environment interaction: s, dg, 1, S1, A1, 1, $9, Ay, ...

s



Calibration Model using a KNN approach

Agent-environment interaction: s, dg, 1, S1, A1, 1, $9, Ay, ...

a~ m(-|s)



Calibration Model using a KNN approach

Agent-environment interaction: s, dg, 1, S1, A1, 1, $9, Ay, ...

Find K nearest neighbours:

coa>)

a~ m(-|s)



Calibration Model using a KNN approach

Agent-environment interaction: s, dg, 1, S1, A1, 1, $9, Ay, ...

Find K nearest neighbours:

[<S’a>] d(<s,a>,

)




Calibration Model using a KNN approach

Agent-environment interaction: s, dg, 1, S1, A1, 1, $9, Ay, ...

Find K nearest neighbours:

[<S’a>] d(<s,a>,
)

<S4,a4, <S5,3s,
S ’,r1> 32’,r2>




Calibration Model using a KNN approach

Agent-environment interaction: s, dg, 1, S1, A1, 1, $9, Ay, ...

Find K nearest neighbours:

[<S’a>] d(<s,a>,
)

<S4,a4, <S5,3s,
S ’,r1> 32’,r2>

V Agent

Model

-

t learn(<s,a,s’,r>)

N\ J




Calibration Model using a KNN approach

Agent-environment interaction: s, dg, 1, S1, A1, 1, $9, Ay, ...

Find K nearest neighbours:

[<S’a>] d(<s,a>,

)

<S4,a4, <S5,3s,
S ’,r1> 32’,r2>

-

learn(<s,a,s’,r>)

N\ J




Additions to KNN Calibration Model:
Learning the Distance

* Relies heavily on the distance function

 We learn a Laplacian distance that respects the dynamics (e.g., walls)

» Related to using successor features as targets: @(s), @(s’) are encouraged
to be similar if discounted sum of future features is similar

e Provides a transition-aware distance metric

Find k nearest neighbours:

Iearn(<s,a,s’,r>)]




Empirical validation

1. Test on simple problems:
» vary data collection (simulating different operators)
* try tuning different hyper-parameters

 compare against relevant baselines (random hypers, learn policy from
dataset and deploy)

o explore limitations and counter-examples

2. Try on real plant data



A Simple Example: Acrobot

Goal: Raise tip above line Data: 5000 transitions under near-optimal policy
Agent: Sarsa with softmax, tile-coding features

Hyperparameters to tune: stepsize and momentum
iIn Adam algorithm (optimizer), temperature in
softmax, weight initialization (optimism)

Treat CM like the real world: try each HP
combination many times in CM and return best
performing



A Simple Example: Acrobot

1100.0 ; _
11> 7 Trueperf. 1 U P IS gOOd

Goal: Raise tip above line

-150.0-

Total reward
averaged

over runs
-200.0-

-250.0 A
Acrobot

Agent learns in CM for 15000 steps

Report median performance across 30 runs (30 datasets), with 25/75 percentiles



A Simple Example: Acrobot

-100.0

1127 fweperf . ___ |
Goal: Raise tip above line Calib

-150.0-

Total reward
averaged

over runs
-200.0-

-250.0 A
Acrobot

Agent learns in CM for 15000 steps

Report median performance across 30 runs (30 datasets), with 25/75 percentiles



A Simple Example: Acrobot

-100.0

1127 {fueperf. . . |
Goal: Raise tip above line Calib '

-150.0-

Total reward
averaged

over runs
-200.0-

-250.0 :
Acrobot

Agent learns in CM for 15000 steps

Report median performance across 30 runs (30 datasets), with 25/75 percentiles



A Simple Example: Acrobot

-100.0 ;
BT LI R LU N2 0 ——— 1-112.7
Goal: Raise tip above line Calib '
(KNN) |
1150.0 - | 386.7
Total reward E-3
averaged FQI
over runs T
-200.0 - --753.6
-250.0 : 1120.5
Acrobot

Agent learns in CM for 15000 steps
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