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Roadmap

1. Why Hierarchy?
2. Existing hierarchical methods and

 their problems
3. Compositionality in Relational 

MDPs: A class of problems where hierarchy is well defined
4. Leverage factorized structure in relational MDPs with a hand 

designed relational abstraction
5. How can we learn a factored abstraction and leverage it?
6. What can we do if we can’t assume factorized structure?



Why 
Hierarchy?
• Long horizon tasks are hard to 

solve
• There may be “skills” that can 

get reused 
• Task is easier to solve when 

split up into different levels of 
abstraction





Skill Hierarchies

• Base hierarchical control on skills.
• Component of behavior.
• Performs continuous, low-level control.
• Can treat as discrete action.

Behavior is modular and compositional



Forms of Abstraction
Action abstraction:

• Create and use higher-level macro-actions.
• Problem now contains subproblems.
• Each subproblem is also an RL problem.



Options 
Framework (Sutton 
et al., 1999)
• Key Idea: Introduces 

options — temporally 
extended actions that 
consist of a policy, a 
termination condition, and 
an initiation set.



Options Framework



Actions as Options



Example

(Sutton, Precup and Singh, AIJ 1999)



Example

(Sutton, Precup and Singh, AIJ 1999)



Example

(Sutton, Precup and Singh, AIJ 1999)





“Modern” Hierarchical RL Methods

• Option-Critic (Bacon et al., 2017): Learns both intra-option 
policies and termination conditions.
• Unstable, tends to collapse to single action options.

• Hierarchical DQN (h-DQN) (Kulkarni et al., 2016): Combines the 
options framework with Deep Q-Networks.
• A high-level policy chooses subgoals.
• A low-level policy tries to achieve those subgoals.



What’s Missing?

• These methods still use the environment reward to learn options
• Long horizon problems are hard!

• Problem: These methods learn both high-level and low-level 
policies simultaneously. But high-level policy depends on low-
level performance.

• Solution: Goal-conditioned low-level policies can be trained 
separately. 



Goal Conditioned RL

• The agent is trained to solve a number of tasks (reach 
goals) within the same environment. 

• A goal is sampled at the beginning of episode.
• The reward function:

𝑟 𝑠; 𝑔 = &
0, 𝑠 = 𝑔
−1, 𝑠 ≠ 𝑔
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“Modern” Hierarchical RL Methods

• HIRO (HIerarchical Reinforcement learning with Off-policy 
correction) (Nachum et al., 2018): Uses off-policy correction for 
effective training of the lower-level policy.
• High-level policy selects goals in state space.
• Lower-level policy is trained off-policy with hindsight-like correction.



“Modern” Hierarchical RL Methods
• DIAYN (Diversity is All You Need, Eysenbach et al., 2018): 

Unsupervised skill discovery: Low-level policies are learned 
without a task-specific high-level controller, by maximizing mutual 
information between latent variables (skills) and state transitions.
• The high-level controller can later be trained to select or condition on 

these skills.
• Useful for offline training of diverse, general-purpose low-level policies.



Task-Agnostic Options

• Train a k-step goal-conditioned policy independent of the high-
level policy (HIRO) 
• Use some other self-supervised objective to train low-level 

policies (DIAYN)



How can we do better?

• These methods do not promote skill reuseExample

(Sutton, Precup and Singh, AIJ 1999)

Navigating within each room or through 
hallways is the same!



What’s a setting where reuse is expected?



Open Problems: Compositionality

Bark Simulator

ProcGen

Useful 
Assumptions?
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Factorization: A way to achieve compositional 
generalization?
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Forms of Compositional Generalization

Figure from: Compositionality decomposed: how do neural networks generalize? Hupkes et al. 2020.
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Relational MDP

Boutilier, Reiter, & Price 2001
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Composable Planning with 
Attributes
with Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus, Arthur Szlam
ICML 2018

Facebook AI Research, NYU

ICML 2018



Inspiration: Stacking Blocks



Learning to Reach Any Goal

• In many domains, there can be combinatorially many possible 
goals
• Building Lego structure
• Performing tasks in an RTS (real time strategy game)

• You may not know at training time which goals are important



Learning to Reach Any Goal

• An RL Approach: Provide a representation of the goal space and 
train a policy 𝜋(𝑠, 𝜌!) to reach goal 𝜌!  using RL
• e.g. universal value function approximators [Schaul et al, 2015]
• Sparse rewards
• Ignores goal space structure

• Our Approach: Learn how to make local transitions in goal space, 
plan over the transition graph
• Allows for zero-shot generalization from short to long tasks



Approach of This Work

• Provide the attributes of the environment we care about
• This state -> attribute mapping is the only supervision

• The agent uses unsupervised exploration to learn how to modify 
attributes of the environment
• At test time, the agent uses attributes to specify a goal and as a 

space for planning



What Are Attributes?

• A set of high level 
features/properties of the state 
users care about
• e.g. which block is on which

• Each property is a binary function of 
the state Red stacked on blue

Green NOT stacked on blue
Yellow right of blue
Green NOT right of blue
…



The Attribute Planner (AP) Model

1. a neural-net based attribute 
detector 𝑓

2. a graph G of reachable 
attributes and edges 
between them

3. a neural net-based low level 
policy 𝜋 𝑠, 𝜌"
• Only knows how to reach nearby 

attribute sets

𝝅 𝒔, 𝝆𝒋



Solving Tasks With The AP Model

1. Given  current state s and 
goal attributes 𝜌!	

2. Predict the current attributes 
𝜌# 

3. Find shortest path 
[𝜌#, 𝜌$, … , 𝜌!] on the graph G

4. Execute first step in the path 
with the low-level policy. 

5. Goto 1
Initial state Goal 

attributes

Attribute graph

Goal

attributes

𝝅 𝒔, 𝝆𝒋



Training the AP Model

Attribute Detector 𝑓

• Train the attribute detector on 
a small number of labeled 
examples.



Training the AP Model

Attribute Graph G
• Take actions with an 

exploratory policy (e.g. 
random) until you reach a new 
set of attributes 𝜌". Add (𝜌% , 𝜌") 
to the graph.
• Repeat from 𝜌" 	or reset. Only 

store attributes that actually 
occur.



Training the AP Model

Low-Level Policy 𝝅

Inverse Training:  Train 𝜋 as an inverse 
model to predict the actions that led to a 
transition during the exploration phase. 

𝝅 𝒔, 𝝆𝒋



Block Stacking Experiments



Block Stacking Experiments



Block Stacking Experiments



Block Stacking Experiments



Grid World Experiments



StarCraft Experiments

• Unlike RL, the AP does not see test-time tasks during training
• AP performs count-based exploration in attribute space to more 

efficiently learn the attribute graph.
• AP scales better as the graph becomes larger



Recap

• The right abstraction leads to compositional generalization
• We define a relational abstraction that naturally breaks the block 

stacking problem into a hierarchy
• What if we don’t have these relational attributes predefined, or 

can’t predefine them?



Combinatorial Generalization in 
Object Rearrangement by 

Hierarchical Latent Grouping
With Michael Chang, Alyssa L. Dayan, Franziska Meier, Thomas L. 

Griffiths, Sergey Levine

ICLR 2023



How do we leverage factorization?

Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement. M. Chang, A. Dayan, F. Meier, T. Griffiths,  S. Levine, AZ. ICLR 2023.

• Problems to solve:
• Extracting factors from the environment
• Correspondence problem: How do we assign identities to factors that 

persist over trajectories?
• Combinatorial problem: How do we leverage factored structure to 

generalize to new states and different numbers and types of factors?



A contribution for solving the factorization 
problem
• Split a factor entity into:

• action-invariant features (its type)
• Action-dependent features (its state) 

• Why?
• Makes it possible during planning and control to reuse action 

representations for different objects in different contexts



How do we leverage factorization?

Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement. M. Chang, A. Dayan, F. Meier, T. Griffiths,  S. Levine, AZ. ICLR 2023.



How do we implement factorization?

Neural Constraint Satisfaction

• Two-level hierarchy: 
• abstract the experience buffer into a graph over state 

transitions of individual entities, separated from other 
contextual entities

• solve new rearrangement problems: NCS infers what state 
transitions can be taken given the current and goal image 
observations, re-composes sequences of state transitions 
from the graph, and translates these transitions into 
actions.



Implementing Neural Constraint Satisfaction 
(NCS)

Modeling
Representation learning
Graph construction

Control



Modeling: Representation Learning

Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement. M. Chang, A. Dayan, F. Meier, T. Griffiths,  S. Levine, AZ. ICLR 2023.



Modeling: Graph Construction

Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement. M. Chang, A. Dayan, F. Meier, T. Griffiths,  S. Levine, AZ. ICLR 2023.



Correspondence Problem



Planning and Control

Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement. M. Chang, A. Dayan, F. Meier, T. Griffiths,  S. Levine, AZ. ICLR 2023.



Results

NF: non-factorized graph



Going beyond the factored setting: What do 
we want in an abstraction?
1. Capture controllability
2. Only capture locally controllable components

Noisy TV problem



Capturing Controllability 

• Multistep-inverse prediction with a latent forward model is enough 
to learn a lossy representation that filters out uncontrollable 
information (noisy TV)

Learning a Fast Mixing Exogenous Block MDP using a Single Trajectory
Alexander Levine, Peter Stone, AZ

Multistep Inverse Is Not All You Need
Alexander Levine, Peter Stone, AZ



Summary

1. Why Hierarchy?
2. Existing hierarchical methods and

 their problems
3. Compositionality in Relational 

MDPs: A class of problems where hierarchy is well defined
4. Leverage factorized structure in relational MDPs with a hand 

designed relational abstraction
5. How can we learn a factored abstraction and leverage it?
6. What can we do if we can’t assume factorized structure?


