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Roadmap

1. Why Hierarchy?

2. Existing hierarchical methods and
their problems

3. Compositionality in Relational
MDPs: A class of problems where hierarchy is well defined

4. Leverage factorized structure in relational MDPs with a hand
designed relational abstraction

5. How can we learn a factored abstraction and leverage it?
6. What can we do if we can’t assume factorized structure?



Why
Hierarchy?

* Long horizon tasks are hard to
solve

* There may be “skills” that can
get reused

* Task is easier to solve when
split up into different levels of
abstraction







Skill Hierarchies

* Base hierarchical control on skills.
e Component of behavior.
* Performs continuous, low-level control.
 Can treat as discrete action.

Behavior is modular and compositional



Forms of Abstraction

(S, A, R,T,~)

* Create and use higher-level macro-actions.
* Problem now contains subproblems.
e Each subproblem is also an RL problem.

state
abstraction

action
abstraction

(S, A, R, T,~)



Options Skill
Framework (Sutton
et al., 1999)

* Key ldea: Introduces
options — temporally
extended actions that
consist of a policy, a
termination condition, and Problem
an initiation set.




Options Framework

An option is one formal model of a skill.
An option o is a policy unit:

e Initiation set I, : S — {0,1}

e Termination condition 5, : S — [0, 1]

e Option policy 7, : S XM — [0, 1]




Actions as Options

A primitive action a can be represented by an option:

°* I,(s)=1,Vs € S
°* Bu(s)=1,Vse S

owa(s,b):{ L a=b

0 otherwise

A primitive action can be executed anywhere, lasts exactly one
time step, and always chooses action a.



Example

(Sutton, Precup and Singh, Al] 1999)

4 stochastic
primitive actions

up

; Fail 33%
feft right of the time

down

8 multi-step options
(to each room's 2 hallways)
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Example

Primitive
options

O=A

Hallway
options

O=H

Initial Values lteration #1 lteration #2
(Sutton, Precup and Singh, Al} 1999)
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Example

Option A Option B Policy




“Modern” Hierarchical RL Methods

* Option-Critic (Bacon et al., 2017): Learns both intra-option
policies and termination conditions.
* Unstable, tends to collapse to single action options.

* Hierarchical DQN (h-DQN) (Kulkarni et al., 2016): Combines the
options framework with Deep Q-Networks.
* Ahigh-level policy chooses subgoals.
* Alow-level policy tries to achieve those subgoals.



What’s Missing?

* These methods still use the environment reward to learn options
* Long horizon problems are hard!

* Problem: These methods learn both high-level and low-level

policies simultaneously. But high-level policy depends on low-
level performance.

* Solution: Goal-conditioned low-level policies can be trained
separately.



Goal Conditioned RL

* The agent is trained to solve a number of tasks (reach
goals) within the same environment.

* A goal is sampled at the beginning of episode.

* The reward function:
0, s=9g
r(s;9) = {_1, s#g
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“Modern” Hierarchical RL Methods

* HIRO (Hlerarchical Reinforcement learning with Off-policy
correction) (Nachum et al., 2018): Uses off-policy correction for
effective training of the lower-level policy.

* High-level policy selects goals in state space.
* Lower-level policy is trained off-policy with hindsight-like correction.

“ 1. Collect experience s, g¢, at, Rty - . . .
h

‘J 2. Train p,lo with  experience transitions

ooo—+g1

(st, gt,at, T, St4+1,gt+1) using g as

1
l additional state observation and reward given by
o o Off-policy training with goal-conditioned function r; =
[ll M respect to goal-conditioned

rewards r(s, g, , Sq,,) r(St, gt, at, St4+1) = —||st + gt — st+1]]2-

\ \ 3. Train p”* on temporally-extended experience
l | i il || (8¢, gts D Re:t4c—1,St+c), where gg is re-
[ O I—" cee re-labelling. labelled high-level action to maximize probability

of past low-level actions a¢:t4c—1.-

l l | |
Ro R1 Rc-1 Rc 4, Repeat.




“Modern” Hierarchical RL Methods

* DIAYN (Diversity is All You Need, Eysenbach et al., 2018):
Unsupervised skill discovery: Low-level policies are learned
without a task-specific high-level controller, by maximizing mutual
information between latent variables (skills) and state transitions.

* The high-level controller can later be trained to select or condition on
these skills.
* Useful for offline training of diverse, general-purpose low-level policies.

e Algorithm 1: DIAYN
' SKILL 1' ¢ Leamed, while not converged do
Sampleo one skilper  /((lf 72 mylay | st, %)) Sample skill z ~ p(z) and initial state so ~ po(s)
skill distribution. /& YOt St+1 for ¢t < 1 to steps_per_episode do
Z ~pl2) ENVIRONMENT Sample action a; ~ o (a¢ | st, z) from skill.
St41 ~ P(St+1 | st, ar) Step environment: S;+1 ~ p(St+1 | St,at).
A\ ¥t 1 Compute gy (2 | st+1) with discriminator.
prmnss s . ) DISGRIMINATOR | 001 | 51) Set skill reward r, = log g4 ( | s:+1) — logp(2)
to maximize discriminability. | QQ(Z ‘ St_t,_l) : gg‘i?;;;ggﬁg;‘anmlze Update pollcy (9) to maximize 7+ with SAC.
"""""" Update discriminator (¢) with SGD.




Task-Agnostic Options

* Train a k-step goal-conditioned policy independent of the high-
level policy (HIRO)

* Use some other self-supervised objective to train low-level
policies (DIAYN)



How can we do better?

* These methods do not promote skill reuse

4 stochastic
primitive actions

Navigating within each room or through
hallways is the same!

up

" Fail 33%
left right of the time

down

8 multi-step options
(to each room'’s 2 hallways)

Target
Hallway
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(Sutton, Precup and Singh,Al] 1999)



What’s a setting where reuse is expected?



Open Problems: Compositionality

Assumptions?

ProcGen

Bark Simulator



Factorization: A way to achieve compositional
generalization?




Forms of Compositional Generalization
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Figure from: Compositionality decomposed: how do neural networks generalize? Hupkes et al. 2



Relational MDP

A Relational MDP family can be described by

@ (: Set of classes denoting different types of object
e.g., {Box, Truck, City}

@ F: Set of function schemata that take objects as input
e.g., {Bin(Box, City), On(Box, Truck)}

@ A: Set of action schemata that operate on objects
e.g., {Unload(Box, Truck,City), Load(Box, City, Truck),
Drive(Truck,City,City) }

@ D: Set of domain objects, each associated with a single type from C

@ T : Transition function

@ R: Reward model

C, F, and A are sets of relational schemata.

25
Boutilier, Reiter, & Price 2001



Composable Planning with
Attributes

with Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus, Arthur Szlam
ICML 2018

Facebook Al Research, NYU

NYU

ICML 2018



Inspiration: Stacking Blocks




Learning to Reach Any Goal

* In many domains, there can be combinatorially many possible
goals
* Building Lego structure
* Performing tasks in an RTS (real time strategy game)

* You may not know at training time which goals are important




Learning to Reach Any Goal

* An RL Approach: Provide a representation of the goal space and
train a policy (s, py) to reach goal p,; using RL
* e.g. universal value function approximators [Schaul et al, 2015]
e Sparse rewards
* Ignores goal space structure

* Our Approach: Learn how to make local transitions in goal space,
plan over the transition graph
* Allows for zero-shot generalization from short to long tasks



Approach of This Work

* Provide the attributes of the environment we care about
* This state -> attribute mapping is the only supervision

* The agent uses unsupervised exploration to learn how to modify
attributes of the environment

* At test time, the agent uses attributes to specify a goal and as a
space for planning



What Are Attributes?

* A set of high level
features/properties of the state

users care about
* e.g. which block is on which

* Each property is a binary function of
the state

‘ Red stacked on blue

' Green NOT stacked on blue
‘ Yellow right of blue

‘ Green NOT right of blue



The Attribute Planner (AP) Model

1. aneural-net based attribute
detector [

2. agraph G of reachable
attributes and edges
between them

/3. a neural net-based low level\

policy n(s, pj)
* Only knows how to reach nearby
attribute sets

o )




Solving Tasks With The AP Model

1. Given current state s and
goal attributes p,,

2. Predict the current attributes

Po
3. Find shortest path

[pOr P1s .- ;pg] on the graph G

4. Execute first step in the path
with the low-level policy.

5. Goto 1

Initial state Goal '




Training the AP Model

Attribute Detector [

* Train the attribute detector on
a small number of labeled
examples.




Training the AP Model

Attribute Graph G

* Take actions with an
exploratory policy (e.g.
random) until you reach a new
set of attributes p;. Add (p;, p;)
to the graph.

* Repeat from p; or reset. Only
store attributes that actually
occCur.




Training the AP Model

Low-Level Policy it

Inverse Training: Train T as an inverse
model to predict the actions thatled to a
transition during the exploration phase.




Block Stacking Experiments

Model Training Data | multi-step
A3C one-step 8.1%
A3C multi-step 0%
A3C curriculum 17%
AP one-step 66.7%




Block Stacking Experiments

Model Training Data | multi-step
A3C one-step 8.1%
A3C multi-step 0%
A3C curriculum 17%
Inverse one-step 9.1%
Inverse multi-step 13.7%
Option-Critic ¥  one-step 0.6%
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AP one-step 66.7%



Block Stacking Experiments

Model Training Data | multi-step
A3C one-step 8.1%
A3C multi-step 0%
A3C curriculum 17%
Inverse one-step 9.1%
Inverse multi-step 13.7%
Option-Critic ¥  one-step 0.6%
Option-Critic *  multi-step 0.2%
Option-Critic *  curriculum 0.4%
AP (no c;) one-step 29.7%
AP one-step 66.7%



Block Stacking Experiments

Model Training Data | multi-step 4-stack underspecified
A3C one-step 8.1% 1.9% 6.6%
A3C multi-step 0% 0% 0%
A3C curriculum 17% 2.9% 0.2%
Inverse one-step 9.1% 0.5% 18.8%
Inverse multi-step 13.7% 4.6% 9.6%
Option-Critic *  one-step 0.6% 1.0% 1.2%
Option-Critic *  multi-step 0.2% 0.5% 1.7%
Option-Critic *  curriculum 0.4% 0.9% 1.0%
AP (no c¢,) one-step 29.7% 62.2% 28.1%
AP one-step 66.7% 98.5% 63.5%



Grid World Experiments

Crafting game

Switch color game

% O A
@ N g - b
© 2 o8 AC ¢
s N 0 7 4
Method Training Data Switches Crafting
Reinforce  one-step 15.4% 49.0%
Reinforce  multi-step 0.0% 28.6%
Reinforce  multi-step + curriculum 33.3% 83.9%
AP one-step 83.1% 96.2%




StarCraft Experiments

Method  Training Data | Small Large

Reinforce  test tasks 12.6% 2.3%

Reinforce  curriculum 18.9%  1.9% _

AP - 31.7% 35.2% o G

m: mineral cost
s: steps needed

* Unlike RL, the AP does not see test-time tasks during training

* AP performs count-based exploration in attribute space to more
efficiently learn the attribute graph.

* AP scales better as the graph becomes larger



Recap

* The right abstraction leads to compositional generalization

* We define a relational abstraction that naturally breaks the block
stacking problem into a hierarchy

* What if we don’t have these relational attributes predefined, or
can’t predefine them?



Combinatorial Generalization in
Object Rearrangement by
Hierarchical Latent Grouping

With Michael Chang, Alyssa L. Dayan, Franziska Meier, Thomas L.
Griffiths, Sergey Levine

ICLR 2023



How do we leverage factorization?

* Problems to solve:
* Extracting factors from the environment

* Correspondence problem: How do we assign identities to factors that
persist over trajectories?

 Combinatorial problem: How do we leverage factored structure to
generalize to new states and different numbers and types of factors?

Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement. M. Chang, A. Dayan, F. Meier, T. Griffiths, S. Levine, AZ. ICLR 2023.



A contribution for solving the factorization
problem

* Split a factor entity into:
* action-invariant features (its type)
* Action-dependent features (its state)

* Why?

* Makes it possible during planning and control to reuse action
representations for different objects in different contexts



How do we leverage factorization?

(b) Combinatorial Problem

different position

observed transition different target object for contextobjedt
oy @ o o\ |® o @
~u@™ |l e ous™| oo ue™ o
% ,

target object that was moved
different target object

different context object and different context
visualized state transition configuration
y @ ¢
r fJ‘. X | ¢

The same state transition can manifest for different objects and in different contexts

Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement. M. Chang, A. Dayan, F. Meier, T. Griffiths, S. Levine, AZ. ICLR 2023.



How do we implement factorization?

H H H The second level groups entities
N e u ra l' C O n St ra l nt Sat 1 Sfa Ct 1 o n that share the same state transition
to produce a graph over entity-
agnostic state transitions

state (texture)

* Two-level hierarchy: entity-set
. . a
* abstract the experience buffer into a graph over state N —~ 2 W sk
transitions of individual entities, separated from other h, detity (el
L. color :
contextual entities b,
* solve new rearrangement problems: NCS infers what state The first iy v visual
transitions can be taken given the current and goal image s

observations, re-composes sequences of state transitions
from the graph, and translates these transitions into

actions.

context objects

target object 0441



Implementing Neural Constraint Satisfaction
(NCS)

G

@

Modeling Control

Representation learning

Graph construction



Modeling: Representation Learning

(a) Representation Learning

same type (solid color), different state (texture)

k ok k Jkr
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Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement. M. Chang, A. Dayan, F. Meier, T. Griffiths, S. Levine, AZ. ICLR 2023.



Modeling: Graph Construction

(b) Graph Construction

concrete entity transitions

abstract state transition s

Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement. M. Chang, A. Dayan, F. Meier, T. Griffiths, S. Levine, AZ. ICLR 2023.



Correspondence Problem

model
entities

observation

environment
objects

same type (solid color), d@ent state (texture)

- /
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ol agent
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Planning and Control

. . — b) align — - =
(a) Action Selection t=0 (b) align ¢ — 4 t=2 t=3
unaligned aligned unaligned aligned unaligned aligned unaligned aligned
0y 0y goal 0, 0; goal 0, 0, goal 03 03 goal
‘ ol y \]. o
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(c) select-constraint

sk
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g " ” = -
[ T I selected goal selected goal selected goal selected goal
entity constraint entity constraint entity constraint entity constraint
slot slot biad " - ®
attention attention

attention mask for
concrete entity

[ Bl
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attention mask for
abstract node
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Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement. M. Chang, A. Dayan, F. Meier, T. Griffiths, S. Levine, AZ. ICLR 2023.



Partitioning of states from the training set into equivalence classes

40

30 4

20 A

10 A

04

Results

(a) block-rearrange, complete specification.
Method 4 5 6 7

NF: non-factorized graph

(b) block-rearrange, complete specification.
Method 4 5 6 7

NCS (ours) 094 +o001 093 o000 093 +000 0.89 +0.00
Rand 0.06 002 0.07 £003 0.07 £003 0.08 £ 0.03
MPC 0.16 006 0.12 £004 0.11 £004 0.10 £0.03

NCS (ours) 0.89 001 0.86 001 0.78 +001  0.70 +o.01
Rand 0.06 £002 0.08 £003 0.08 £003 0.08 +0.03
MPC 0.13 005 0.11 £004 0.10 £004 0.08 +0.03

NF 0.06 £003 0.07 003 0.08 £003 0.07 £0.03
IQL 0.01 £o001 0.07 £001 0.05 +o001 0.05 +0.00
BC 0.05 001 0.04 £000 0.03 £000 0.03 +0.00

(d) robogym-rearrange, partial specification.
Method 4 5 6 7

NF 0.07 003 0.06 £002 0.07 £002 0.08 +0.03
IQL 0.07 £001  0.03 £000 0.02 +000 0.02 +0.00
BC 0.03 000 0.02 £000 0.01 +000 0.01 +0.00

(c) robogym-rearrange, complete specification.

Method 4 5 6 7

NCS (ours) 0.64 001 047 +001 0.49 +001 0.41 +o.01
Rand 0.01 £000 0.01 £000 0.00 £000 0.00 + 0.00
MPC 0.00 £000 0.00 £000 0.00 £000 0.00 + 0.00
NF 0.01 £000 0.01 £000 0.00 £000 0.00 + 0.00
IQL 0.00 +000 0.00 +000 0.00 +0.00 0.00 + 0.00

BC 0.00 £000 0.00 £000 0.00 £000 0.00 + 0.00

NCS (ours) 0.47 +o0.01 0.33 + o001 0.27 +o.01 0.22 + o001
Rand 0.005 +0001  0.001 +000 0.002 +0.001 0.001 +0.00

MPC 0.00 +0.00 0.001 =+ 0.001 0.00 + 0.00 0.00 =+ 0.00
NF 0.005 0001  0.001 £000 0.002 £0001 0.001 +0.00
IQL 0.00 =+ 0.00 0.00 =+ 0.00 0.00 =+ 0.00 0.00 +0.00
BC 0.00 +0.00 0.00 =+ 0.00 0.00 + 0.00 0.00 + 0.00



Going beyond the factored setting: What do
we want in an abstraction?

1. Capture controllability
2. Only capture locally controllable components

Noisy TV problem




Capturing Controllability

* Multistep-inverse prediction with a latent forward model is enough
to learn a lossy representation that filters out uncontrollable

information (noisy TV)

Multistep Inverse Is Not All You Need
Alexander Levine, Peter Stone, AZ

Learning a Fast Mixing Exogenous Block MDP using a Single Trajectory
Alexander Levine, Peter Stone, AZ



Summary

1. Why Hierarchy?

2. Existing hierarchical methods and
their problems

3. Compositionality in Relational
MDPs: A class of problems where hierarchy is well defined

4. Leverage factorized structure in relational MDPs with a hand
designed relational abstraction

5. How can we learn a factored abstraction and leverage it?
6. What can we do if we can’t assume factorized structure?



