exploration in reinforcement learning

Benjamin Van Roy

Reinforcement Learning

robotics

online education

leveraging llms

exploration

other learning paradigms are about minimization, reinforcement learning is about maximization

dithering

the prevalent approach to exploration in deep rl

• consider learning a value function $Q_{\theta}(s, a)$

• greedy $A_t = \arg \max_{a \in \mathcal{A}} Q_{\theta}(S_t, a)$

•
$$\epsilon$$
-greedy $A_t = \begin{cases} \underset{\text{unif}(\mathcal{A})}{\operatorname{arg max}_{a \in \mathcal{A}} Q_{\theta}(S_t, a)} & \text{w.p. } 1 - \epsilon \\ \underset{\text{w.p. } \epsilon}{\operatorname{w.p. } \epsilon} \end{cases}$

• ϵ -Boltzmann $A_t \sim \frac{e^{Q_{\theta}(S_t, \cdot)/\epsilon}}{\sum_{a \in \mathcal{A}} e^{Q_{\theta}(S_t, a)}}$

Cart-Pole Problem

- Easy case
 - Continual feedback
 - Distance from goal state
 - Solved by basic RL algorithms

- Hard case
 - Sparse feedback
 - Reward for completion
 - Requires sophisticated exploration

Cart-Pole with Sparse Reward

dithering exploration

deep exploration

after 1000 episodes

after 1000 episodes

What is Deep Exploration?

motivations

	reward	learning
immediate	myopic optimization	myopic exploration
later in episode	multi-period optimization	deep exploration

how to make this scalable for deep rl?

Two Cultures of Reinforcement Learning?

efficient exploration may rely on insight from theory

motivation via simple example

- Thompson sampling for the linear bandit
- ensemble sampling for the linear bandit
- ensemble sampling for deep rl

bandits

bandit: action influences only the next observation

linear bandit

$$A \subseteq \text{unit ball}$$

$$R_{t+1} = O_{t+1}$$

$$R_{t+1} = \theta^{\top} A_t + W_{t+1}$$

$$\theta \sim \mathcal{N}(\mu_0, \Sigma_0)$$

$$W_{t+1} \sim \mathcal{N}(0, \sigma^2)$$

$$Regret(T) = \sum_{t=0}^{T-1} (\max_{a \in \mathcal{A}} \theta^{\top} a - \theta^{\top} A_t)$$

Thompson sampling for the linear bandit

for
$$t = 0, 1, 2, ...$$

$$\hat{\theta}_t \sim \mathcal{N}(\mu_t, \Sigma_t)$$

$$A_t = \arg\max_{a \in \mathcal{A}} \hat{\theta}_t^{\top} a$$
observe R_{t+1}
compute posterior μ_{t+1}, Σ_{t+1}

$$\mu_0 = 0$$

$$\Sigma_0 = I \longrightarrow \mathbb{E}[\operatorname{Regret}(T)] = d \sqrt{T \log \left(3 + \frac{3\sqrt{2T}}{d}\right)}$$

Thompson sampling via data perturbation

for
$$t = 0, 1, 2, \dots$$

$$\tilde{\theta}_t \sim \mathcal{N}(\mu_0, \Sigma_0)$$

$$\tilde{W}_{t+1} \sim \mathcal{N}(0, \sigma^2)$$

$$\hat{\theta}_t = \arg\min_{\theta} \frac{1}{\sigma^2} \sum_{k=0}^{t-1} (R_{t+1} - \theta^{\top} A_t + \tilde{W}_{t+1})^2 + (\theta - \tilde{\theta}_t)^{\top} \Sigma_0^{-1} (\theta - \tilde{\theta}_t)$$

$$A_t = \arg\max_{a \in \mathcal{A}} \hat{\theta}_t^{\top} a$$

observe R_{t+1}

ensemble sampling

for
$$t = 0, 1, 2, ...$$

$$n \sim \text{unif}(1, ..., N)$$

$$A_t = \arg \max_{a \in \mathcal{A}} \hat{\theta}_n^{\top} a$$
observe R_{t+1}

$$\mathcal{L}_n(\theta) = \frac{1}{\sigma^2} \sum_{k=0}^{t-1} (R_{t+1} - \theta^\top A_t + \tilde{W}_{t,n})^2 + (\theta - \tilde{\theta}_n)^\top \Sigma_0 (\theta - \tilde{\theta}_n)$$
$$\hat{\theta}_n = \arg\min_{\theta} \mathcal{L}_n(\theta)$$

as N grows, ensemble sampling approximates TS

ensemble sampling with incremental updating

for
$$t = 0, 1, 2, ...$$

$$n \sim \text{unif}(1, ..., N)$$

$$A_t = \arg \max_{a \in \mathcal{A}} \hat{\theta}_n^{\top} a$$
observe R_{t+1}

$$\mathcal{L}_n(\theta) = \frac{1}{\sigma^2} \sum_{k=0}^{t-1} (R_{t+1} - \theta^{\top} A_t + \tilde{W}_{t,n})^2 + (\theta - \tilde{\theta}_n)^{\top} \Sigma_0(\theta - \tilde{\theta}_n)$$

$$\hat{\theta}_n \leftarrow \hat{\theta}_n - \alpha \nabla \mathcal{L}_n(\hat{\theta}_n)$$

as N grows, ensemble sampling approximates TS

from the linear bandit to deep rl

- consider learning value functions $Q_{\theta_1}, \dots, Q_{\theta_N}$
- minimize perturbed loss functions $\hat{\theta}_n \leftarrow \hat{\theta}_n \alpha \nabla \mathcal{L}_n(\hat{\theta}_n)$

occasionally
$$\leq$$
 why occasionally? $n \sim \text{unif}(1, \dots, N)$ $A_t = \arg\max_{a \in \mathcal{A}} Q_{\theta_n}(S_t, a)$ observe O_{t+1}

Cart-Pole with Sparse Reward

dithering

ensemble

opportunity for faster learning through data sharing and coordinated exploration

Coordinated Exploration via Bootstrapped DQN

Can we do better than Thompson Sampling?

- TS suitable tries actions that might be optimal
 - works well for linear bandit
 - bad idea when there are complex dependencies
- example: a revealing action

$$\mathcal{A} = \{0, 1, \dots, 6\}$$

$$R_{t+1} = \begin{cases} 1 & \text{if } A_t = \theta \\ 1/2\theta & \text{if } A_t = 0 \end{cases}$$

$$\theta = \{1, \dots, 6\}$$

Example: Sparse Linear Bandit

• a 1-sparse case

$$R_{t+1} = \theta^{\top} A_t$$

$$\theta \in \{0,1\}^N \quad \|\theta\|_0 = 1$$
uniform prior

each $a \in \mathcal{A}$ averages over a subset of components

- UCB/TS require $\Omega(d)$ samples to identify
 - rule out one action per period

- easy to design algorithms for which $\log_2(d)$ suffice
 - bisection search

information-directed sampling

- can we capture the benefits of binary search?
 - across a broad class of problems
 - with a tractable algorithm
- IDS: minimize the information ratio

$$\frac{\mathbb{E}_t[R_* - R_{t+1}]^2}{\mathbb{I}_t(A_*; (A_t, R_{t+1}))}$$

• designing practical scalable algorithms remains a challenge

benefits may be significant when the agent aims to learn features, like in deep RL

reading

Journal of Machine Learning Research 20 (2019) 1-62

Submitted 5/18; Revised 8/19; Published 8/19

Deep Exploration via Randomized Value Functions

Ian Osband IOSBAND@GOOGLE.COM DeepMind

Benjamin Van Roy

BVR@STANFORD.EDU

Stanford University

djr2174@gsb.columbia.edu

Daniel J. Russo Columbia University

Zheng Wen

 $Adobe\ Research$

ZWEN@ADOBE.COM

Editor: Peter Auer

Abstract

We study the use of randomized value functions to guide deep exploration in reinforcement learning. This offers an elegant means for synthesizing statistically and computationally efficient exploration with common practical approaches to value function learning. We present several reinforcement learning algorithms that leverage randomized value functions and demonstrate their efficacy through computational studies. We also prove a regret bound that establishes statistical efficiency with a tabular representation.

Keywords: Reinforcement learning, exploration, value function, neural network

