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exploration

other learning paradigms are about minimization,
reinforcement learning is about maximization

- A. Harry Klopf

Hedonistic

Neuron

A Theory of Memory,
Learning,
and Intelligence




dithering

the prevalent approach to exploration in deep rl

consider learning a value function Qy (s, a)

greedy A, = arg meajc Qo (St, a)

- d — arginaXqe A QQ(Sty Cl) w.p. 1 —¢€
e-greedy A, { amif(A) .

eQQ (Stv')/e
ZaE.A eQo(5e.0)

e-Boltzmann A; ~



Cart-Pole Problem

® Lasy case
® (ontinual feedback
® Distance from goal state
® Solved by basic RL algorithms

® Hard case
® Sparse feedback tap right
® Reward for completion

® Requires sophisticated exploration <




Cart-Pole with Sparse Reward

dithering exploration deep exploration

after 1000 episodes after 1000 episodes



What 1s Deep Exploration?

motivations

reward learning

immediate

later in
episode

how to make this scalable for deep rl?




Two Cultures of Reinforcement Learning?
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efficient exploration may rely on insight from theory




motivation via simple example

® Thompson sampling for the linear bandit
® cnsemble sampling for the linear bandit

® cnsemble sampling for deep rl



bandits

agent environment
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bandit: action influences only the next observation




linear bandit

A C unit ball

Riy1 = 0O¢yq

Rt_|_1 — QTAt + Wt—l—l
0 ~ N (1o, X0)

Wt_|_1 ~ N(O, 0'2)

T—1

Regret(T) = Z (I;leaj{ 0'la—0"A)



Thompson sampling for the linear bandit

fort=0,1,2,...
étNN(,Uftazt)

A, = argmax#, a
acA

observe Ry

compute posterior fiyy1, 2441
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Thompson sampling via data perturbation

fort =0,1,2,...
étNN(,uO)EO)

Wt_|_1 ~ N(O, 0'2)

(915 — arg mlll Z Rt_|_1 — HTAt —+ Wt_|_1) -+ (9 — ét)Tzal(Q — ét)

A; = arg max GT
ac A

observe R;q



ensemble sampling

fort=0,1,2,...
n ~ unif(1,..., N)

A; = arg max HT
acA

observe Ry

1

0-2

t—1
> (Res1— 0T Ay + Wip)® + (0 — 0,) " S0(6 — 6,,)
k=0

A

0, = arg m@in L, (0)

as N grows, ensemble sampling approximates TS




ensemble sampling with incremental updating

fort=0,1,2,...
n ~ unif(1,..., N)

A; = arg max HT
acA

observe Ry
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= — > (Rip1 =0T A+ Wip)® + (0 — 0,) "S0(0 — 0,,)
=0

o2
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O, < 0,, — aV Ly, (0,)

as N grows, ensemble sampling approximates TS




from the linear bandit to deep 1l

dee
S, a P Qo(s,a)
neural network
® consider learning value functions Qg,,...,Qoy

A

® minimize perturbed loss functions 6, < 6,, — aV L, (6,)

occasionally 3{ why occasionally?
n ~ unif(1,..., N)

Ay = S
t arg Ianéaj( Qe'n ( ts CL)

observe O




Cart-Pole with Sparse Reward

dithering

ensemble




opportunity for faster learning through
data sharing and coordinated exploration




Coordinated Exploration via Bootstrapped DQN

100 workers total




Can we do better than Thompson Sampling?

® TS suitable tries actions that might be optimal
® works well for linear bandit

® bad idea when there are complex dependencies

® cxample: a revealing action

< A=1{0,1,...,6}
2 Ao _J1 if A, =0
= T 1200 i A =0

action



Example: Sparse Linear Bandit

® a |-sparse case

0 {0,1}"  [0llo=1

uniform prior

Rit1 = QTAt

each a € A averages over a subset of components

® UCB/TS require Q)(d) samples to 1dentify

® rule out one action per period

® casy to design algorithms for which log,(d) suffice
® bisection search



information-directed sampling

® can we capture the benefits of binary search?
® across a broad class of problems
® with a tractable algorithm

® [DS: minimize the information ratio

Et[R* — Rt—|—1]2
Ht(A*§ (At7 Rt—l—l))

® designing practical scalable algorithms remains a challenge

4 )

benefits may be significant when
the agent aims to learn features, like in deep RL
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Abstract
‘We study the use of randomized value functions to guide deep exploration in reinforcement
learning. This offers an elegant means for synthesizing istically and cc i

efficient exploration with common practical approaches to value function learning. We
present several reinforcement learning algorithms that leverage randomized value functions
and demonstrate their efficacy through computational studies. We also prove a regret
bound that establishes statistical efficiency with a tabular representation.
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