Northeastern University
Khoury College of
Computer Sciences

A Short Introduction to Cooperative
Multi-Agent Reinforcement Learning

Chris Amato

Multi-agent systems are (going to be) everywhere

| _ Booking

P
6 N—

amazon

—
Y

Drone delivery

LLM agents Autonomous cars

Amazon Northeastern

- e

Home robots Warehouse robots Factories

iIRobot Amazon Accenture/nvidia

Reinforcement learning has a number of successes

THE ULTIMATE GO CHALLENGE
GAME 3 OF 3

27 MAY 2017

s

Y AlphaGo Ke Jie

Winner of Match 3

RESULT B + Res

Atari (Google DeepMind)

r - T
r -
_— . -.. - e
; r ’ o
F - =
| | " - . s
| il . %
1 [N . k-
L N B L - |
" . . —
| - - :) i 3 |
| - e - 4
I- .- .."- e i - - F '.
h ..-' - - i " i -I -I
- r
y
. _—)

FINGER PIVOTING SLIDING FINGER GAITING

Robot manipulation (OpenAl) ChatG.PT (OpenAl)

Multi-agent RL has had some successes

(3] LiquidTLO Y 1471

Emergent tool use (OpenAl) AIphaStar (Google Deelend)

Multi-agent RL is hard

* How can we apply RL here?

* Centralized learning and control? Need fast, perfect
communication (cooperative case)

* Decentralized learning and control? Limited
knowledge of other agents and environmental
nonstationarity

* Centralized training for decentralized execution? Use
centralized information offline but still execute in a
decentralized way

* Almost always have partial observability

]
el
-

Overview

* Define the cooperative multi-agent RL (MARL) problem
* Discuss the current state-of-the art for the different classes of solutions
* Centralized training and execution

* Decentralized training and execution: IQL, decentralized REINFORCE, deep
extensions

* CTDE: VDN, QMIX, QPLEX, MADDPG, MAPPO
* |dentify misconceptions/issues with current methods

* Applications, code, other topics, and the future (LLMs?)

Cooperative MARL

* Cooperative case represented as Decentralized POMDP: </, S, {A}, T, R, {Q}, O, &>

* |/, afinite set of agents

* S, aset of states

* A, each agent’s set of actions

* T, the state transition model: P(s’|s, a)

* R, the reward model: R(s, a)

* (), each agent's finite set of observations

* O, the observation model: P(o|s’, a)

* h, horizon or discount

Cooperative MARL

* Cooperative case represented as Decentralized POMDP: </, S, {A}, T, R, {Q}, O, &>

* |/, afinite set of agents

* S, aset of states

* A, each agent’s set of actions

* T, the state transition model: P(s’|s, a)

* R, the reward model: R(s, a)

* (), each agent's finite set of observations

* O, the observation model: P(o|s’, a)

* h, horizon or discount

Objective: Maximize the (discounted) sum of future (joint) rewards Cooperative

Cooperative MARL

* Cooperative case represented as Decentralized POMDP: </, S, {A}, T, R, {Q}, O, &>
* |/, afinite set of agents
* S, aset of states
* A, each agent’s set of actions
* T, the state transition model: P(s’|s, a)
* R, the reward model: R(s, a)
* (), each agent's finite set of observations

* O, the observation model: P(o|s’, a)

* h, horizon or discount

Objective: Maximize the (discounted) sum of future (joint) rewards

Calculate a set of optimal policies for each agent «.*: H. — A. that maximize joint objective

Decentralized partially observable execution

General MARL

* General case as Partially Observable Stochastic Game (POSG): </, S, {A}, T, {R}, {Q}, O,
?[>

* |/, afinite set of agents

* S, aset of states

* A, each agent’s set of actions

* T, the state transition model: P(s’|s, a)

* R, the reward model: R,(s, a)

* (), each agent’s finite set of observations

* O, the observation model: P(o|s’, a)

°* h, horizon or discount

Objective unclear: Some form of each agent maximizing the (discounted) sum of future individual rewards
Mixed/competitive

Centralized MARL

Models and methods

Centralized MARL

Assumptions:

* a centralized controller chooses actions for each
agent, a

* each agent takes the chosen actions a = (a,,...,a,),

* the centralized controller observes the resulting
observations o= (0,,...,0,)

Centralized Centralized

* the (centralized) algorithm/controller observes o (and Actor Critic
a) and the joint reward r

Note: Not a Dec-POMDP (or POSG) anymore since execution is centralized

Centralized MARL (partially observable)

* Cooperative case represented as MPOMDP: </, S, {A}, T, R, {Q}, O, &>
* /, afinite set of agents
* S, aset of states
* A, each agent’s set of actions
* T, the state transition model: P(s'|s, a)
* R, the reward model: R(s, a)
* (), each agent’s finite set of observations
* O, the observation model: P(o|s’, a)
* h, horizon or discount 2

Objective: Maximize the (discounted) sum of future (joint) rewards

Calculate a single optimal policy for all agents n*: H — A that maximizes centralized objective

Centralized MARL (fully observable)

* Cooperative case represented as MMDP: </, S, {A}, T, R, @>

* /, afinite set of agents

e S, aset of states

* A, each agent's set of actions

* T, the state transition model: P(s'|s, a) Q@..gm S

* R, the reward model: R(s, a)

* h, horizon or discount [z

Objective: Maximize the (discounted) sum of future (joint) rewards

Calculate a single optimal policy for all agents ©*: S — A that maximizes centralized objective

Centralized MARL (DRQN version)

Traditional Q-learning: estimate Q-value with (x can be state, observation or history)

Q(x,a) + Q(x,a) + ad For learning rate «a
6 =Q(z,a) — (r +ymaxQ(z',a’))

* Deep Q-Networks (DQN) (Mnih et al., Nature 15) uses a neural net for function approximation

Q-function
O 70 7
\,-.
state O‘-{'}-AO e

0 ,,,(wo :j; action Helps with scalability

argmax

* DRAQN (Hausknecht and Stone, arXiv 15) adds a recurrent layer for memory

D .
Joint history 90 - action Helps with partial observability

- recurrent (e.g, LSTM)

Q(h,a) < Q(h,a) - 6 = Q(h,a)—(r+yrrza}XQ(h,a’))

Centralized MARL methods

°* Now just a (factored) single-agent problem

* Multi-agent MDP or POMDP (not Dec-POMDP/POSG)

* Can use any single-agent RL method

* But it doesn't scale well

* And assumes centralized information and control

* Some methods exploit multi-agent factorization but not very active
* Coordination graphs [Guestrin et al., 2001]
* AlphaStar [Vinyals et al., 2019]

Decentralizing centralized solutions

Easy to ‘decentralize’ in a MMDP or MPOMDP
° MMDP
* S—>AorS—A
* MPOMDP
* H—>AOrH— A
Hard in a Dec-POMDP

Once you have H - Ahow do you getH. — A, ?

Easy to decentralize control but not information

Decentralized MARL

Models and methods

Decentralized MARL

Assumptions:

* each agent, i, observes its current observation, o, e
and takes action q; at the resulting history, 7,

* the (decentralized) algorithm/controller sees the
same information (o, and a.) as well as the joint
reward r.

Actor, Critic,
()
e
o

Decentralized MARL

* Agents each learn separately

* Assumes training and execution are decentralized (e.g., lack of |
communication) <

* |s more scalable
* The realistic case for POSGs and online learning in Dec-POMDPs

. EIaCh Egent I learns a policy that maps from local histories to local actions ;.
| T

)
* (Can also use any single-agent method here [J

000

* May be nonstationarity but there are many methods for dealing with that

—

° Mana/ improvements: Distributed Q, ICML-00; Hysteretic Q, IROS-07, [
ICM -2107; Lenient Q JMLR-08, AAMAS-18; Likelihood Q, A AMAS-20; IPPO
arxiv-

Decentralized Action-Value
Methods

IQL, Distributed Q, Hysteretic Q, Lenient Q
Deep extensions

methods were originally developed for the fully observable case

Independent Q-Learning (IQL)... ...

* Just apply Q-learning pretending the other agents don't exist

Algorithm 1 Independent Q-Learning for agent 2 (finite-horizon)

1: set o and € (learning rate, exploration)
2: Initialize (); for all h; € H;, a; € A,
3: for all episodes do

4: h; < () {Empty initial history }
5. fort=1toH do

6: Choose a; at h; from Q;(h;, -) with exploration (e.g., e-greedy)

7: See joint reward 7, local observation o; {Depends on joint action a }
8: h. < h;a;0;

9. Qg(h“ G,?j) <— Qﬁ(h“ ai) + o [T + 7y m&Xag Qg(h;, a;) — Qg(h“ G,ﬁ):|
10: h; < h

11: end for

12: end for

13: return (Q);

https://www.sciencedirect.com/science/article/pii/B9781558603073500496

Independent Q-Learning (IQL)... ...

* Just apply Q-learning pretending the other agents don't exist

* Where do the observations and joint rewards come from?

Algorithm 1 Independent Q-Learning for agent ¢ (finite-horizon)

1: set a and € (learning rate, exploration)

2: Initialize Q; for all h; € H;, a; € A, P(o|s’,a) P(s'|s,a)
3: for all episodes do
4: h; 0 {Empty initial history}
5: fort=1toH do
R(s, a) 6: Choose a; at h; from Q;(h;, -) with exploration (e.g., e-greedy)
7: See joint reward r, local observation o, {Depends on joint action a }
8: h. < h;a;0;
9: Qi(his a;) Q;i(hi,a;) + o [r + ymaxy Q;(h), a) — Qi(hs, a;))
10: h; < h;
11: end for
12: end for

13: return Q);

https://www.sciencedirect.com/science/article/pii/B9781558603073500496

Important hidden information

Agents don't exist by themselves!
Assumes other agents are acting according to some (fixed) policies
Then learns as if in a POMDP where other agents are part of the environment:
Qi(hi,a;) = Z P(ﬂah‘hn a;) |+ ’}’Z ﬁ(oi\h, a) max Qi(h;, a;)
achA 0; i
This is where non-stationarity comes from!

* Other learning agents change their policies over time

Ps are empirical probabilities from data during training

|QL properties

* |QL may not converge (Tan ICML 93)
* Convergence properties of Q-learning in Dec-POMDPs is an open question!
* Usually performs poorly (often used as a baseline)

* Note even with optimal Q-values, agents may not select the optimal action
without coordination when multiple actions are optimal (like equilibrium

selection)

Ql(hlaa’i) = Ql(hhﬂ%) QQ(hsz%) — Qz(hzaﬂfr%)

Q(hlah2aa’%aa’2) — Q(hlahQaa’%aa’%) < Q(hlahQ&a’%aa’z) — Q(hlahﬁaa’%aa’%)

Extension to the
deep case -

I D RQN Tampuu et al. — Plos one 17

* Just DRQN applied to the
multi-agent case

* Still needs other agents to
act

Algorithm 2 Independent DRQN (IDRQN) for agent ¢ (finite-horizon*)

l:

[—
<

11:
12:
13:
14:
15:
16:
17:
18:

19:

20:
21:
22:
23:
24
25:
26:
27:

N R A Ll I

set a, €, and C' (learning rate, exploration, and target update frequency)
Initialize network parameters € and 8~ for QQ;
D, +
e+ 1 {episode index }
for all episodes do
h; < 0 {initial history is empty}
fort =1to?H do
Choose a; at h; from QY(h;, -) with exploration (e.g., e-greedy)
See joint reward r, local observation o; {Depends on joint action a}
append a;, 0;, T to D¢
h; < h;a;0; {update RNN state of the network}
end for
sample an episode from D Based on other agents
fort =1to?H do
a;, 0;,7 < D(t)
h; < h;a;o0;
y =+ ymax, Q' (h!,a))
Perform gradient descent on parameters € with learning rate « and loss: (y —QY(h,, ai))2

end for
if e mod C' = 0 then
0~ < 6
end if
e+ e+ 1
end for
return (),

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395

Extension to the
deep case -

I D RQN Tampuu et al. — Plos one 17

* Just DRQN applied to the
multi-agent case

* Still needs other agents to
act

* Independent buffers cause
poor performance (non-
stationarity)

Algorithm 2 Independent DRQN (IDRQN) for agent ¢ (finite-horizon*)

1:
2: Initialize network parameters € and 8~ for QQ;

3: D,

4: e+ 1 {episode index }
3:
6
7
8
9

10:
11:
12:
13:
14;
15:
16:
17:
18:

19:

20:
21:
22:
23:
24
25:
26:
27:

set a, €, and C' (learning rate, exploration, and target update frequency)

for all episodes do
h; < 0 {initial history is empty}
fort =1toH do
Choose a; at h; from QY(h;, -) with exploration (e.g., e-greedy)
See joint reward r, local observation o; {Depends on joint action a}
append a;, 0;, T to D¢
h; < h;a;0; {update RNN state of the network}
end for
sample an episode from D Based on other agents
fort =1toH do
a;, 0;,7 < D(t)
h; < h;a;0;
y =7 +ymax, Q7 (hi,a;)
Perform gradient descent on parameters € with learning rate « and loss: (y —QY(h, a;)) ?

end for
if e mod C' = 0 then
0~ < 6
end if
e+ e+ 1
end for
return (),

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395

Decentralized MARL (Dec-HDRQN)

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

* Traditional Q-learning: estimate Q-value with (x can be state, observation or history)

Q(x,a) + Q(x,a) + ad For learning rate «
0 =Q(z,a) — (r+ ’)/H?JXQ(QZ,,CL,))

* Hysteresis (Matignon et al., IROS 07): two learning rates a and B (with 8 < a)

Q(xr,a) « Q(r,a)+ Lo if o <0 Helps with coordination
Q(xr,a) + a0 otherwise

 Still use DRQN (Hausknecht and Stone, arXiv 15) if partially observable

. - . . O '7O 70 70 argmax
beolle A
) O—bspo %O %O .io > action
) O O O iO Helps with partial observability
O O O *—— recurrent (e.g, LSTM)

Helps with scalability

Local history

Q(h; a;) « Q(hy, a;) + ad 6 = Q(hya;) - (7” +y max Q(hy, a;))

l

https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf

Decentralized Hysteretic DQN (Dec-HDRQN)

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

* Dec-HDRQN algorithm overview

* Use idea from previous slide to help with
cooperation, scalablility and partial observabillity

* Each agent learns concurrently (not
independently)

* Use decentralized Concurrent Experience Replay
Trajectories (CERTSs) (synchronized buffers) to
stabilize learning

* Current decentralized methods (e.g., IPPO) also use
some form of concurrent learning

https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf

Other deep decentralized methods

* Several other extensions of tabular and single agent methods
* Deep lenient Q-learning (Palmer et al. AAMAS 18)

* Only for the fully observable case

* Add leniency values to the replay buffer (s.,a:, e, siv1,1(si,) fOr i(ss,a;) = 1 — e KxT(9(s0),a0)
* Likelihood Q-learning (Lyu et al. AAMAS 20)

* Uses distributional RL to estimate when other agents are exploring and use
that info to adjust learning rate

Decentralized Policy Gradient
Methods

Decentralized REINFORCE, IAC, IPPO

Dece ntral ized RE I N FO RC E Peshkin et al. — UAI 00

* Extends sin%le agent

REINFORC

(Williams 92)

* Simple but has
convergence guarantees!

* joint gradient can be

decomposed into
decentralized
gradients

|.e., this algorithm
converges to the same
values as a |
centralized algorithm
(over decentralized
policies)

Assumes concurrent
learning

Algorithm 3 Decentralized REINFORCE for agent ¢ (finite-horizon)

Require: Individual actor models 7;(a;|h;), parameterized by ;
1: set o (learning rate)

" Policy but no value function
2: for all episodes do Icy but no value funct

32 hig« 0 { Empty initial history}
4 €p @ Based on other agents {Empty ePlSOde}
5 fort=0toH — 1do
6: Choose a;; at h; ; from m;(a;{/r; ;)
7 See joint reward r;,"10cal observation o, {Depends on joint action a}
8 append a; ¢, 0; ¢, T+ tO €p
9 Riti1 < hita; 10,4 { Append new action and obs to previous history}
10: end for
11: fort=0toH —1do
21 Monte Carlo returns
12: Compute return at ¢ from ep: G; ¢ >, 7 'ry
13: Update parameters: ¢; < ¥; + ay'G;,V log m;(a;|h; ;)
14: end for
15: end for

Note: this version generalizes the original algorithm which was defined for finite-state controllers

https://dl.acm.org/doi/10.5555/2073946.2074003

Independent actor critic (IAC) ..o s

Policy and value model

Algorithm 4 Independent Actor-Critic (IAC) (finite-horizon)

e Extends Require: Individual actor models 7;(a;|h;), parameterized by 1;
Decentralized Require: Individual critic models IZ—(h,), parameterized by 6,
REINFORCE to 1: for all GPISOdGS do o |
. 2. hig 0 {Empty initial history}
the Actor Critic 3 fort=0toH —1do
case 4: Choose a; ; at h; ; from 7;(a;|h; ;)
5: See joint reward 7, local observation o; ; {Depends on joint action a }
6: Riv1 < hi1a;.04 { Append new action and obs to previous history }
7. Compute value TD error: (5” — 71y + ’}’V@(hi’prl) — Vi(hz‘,t) On-policy error
8: Compute actor gradient estimate: v*9; :V log ;(a; ¢|h; +)
9: Update actor parameters <; using gradient estimate (e.g., v¥; <+ ¥; +

ay'6;:V log mi(ait|hit))

10: Compute critic gradient estimate: 5¢,3V12(h3-3t) Update both models
11: Update critic parameters 6; using gradient estimate (e.g., 0; < 6; + 870, :VV;(hiy))
12: end for

13: end for

https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf

Other decentralized PG methods

* Can extend any single-agent PG method to the multi-agent case
* |Independent PPO (IPPO) (de Witt et al. 20)

* A version of IAC with PPO as the base RL method

°* Yu et al. (22) version uses parameter sharing (not DTE)

* More about IPPO and MAPPO in the CTDE discussion

* Not a very active area

Other topics

* Parameter sharing
* Agents share the same copy of policy and/or value networks
* | consider this a form of CTDE (since it assumes centralized info)

* Decentralized methods can easily use parameter sharing to potentially improve
performance

* Relationship with CTDE
* Centralized PG equal to decentralized PG so maybe not that different?
* Other forms of decentralization

* Communication during execution using ‘networked’ agents, e.g., (Zhang et al. 18)

Centralized Training for
Decentralized Execution (CTDE)
MARL

Models and methods

Centralized training for decentralized execution
(CTDE)

Assumptions

* each agent, i, observes its current observation, o, and & a 4
takes agction a; at the resulting history, 7, like DTE @:5.;3 ‘§ {‘\

: % .

* the (centralized) algorithm/controller observes joint 3 -___Ea.-' Environment
information o and a and the joint reward r (and IHy ‘(
po$3|bg/ other information such as the underlying state .

s) like CTE

Centralized

000

Critic

By far the most common type of (cooperative) MARL [

—

Centralized training for decentralized execution
(CTDE)

* Train offline for online execution

: H r
R . : . *:‘—';_Lr 1
Can use centralized info offline ¥y ‘§ VN
: 1 Environment

* Still need to execute in a decentralized manner

 CTDE has become the dominant form of
(cooperative) MARL

—

* Many methods: MADDPG, NeurlPS-17; COMA [
AAAI-18; QMIX, ICML-18; QPLEX, ICML-21;
MAPPO, NeurlPS DB-22 [

Centralized

000

Critic

—

CTDE Action-Value Methods

Value function factorization: VDN, QMIX, and QPLEX

Value function factorization methods

O(h,")
* Basic idea: 1

* Learn individual Q-values per agent as well as a Mi"i"gk - s

form of joint Q-function \ "Etwm‘ /
|

* During training, learn individual Q-values from 0,/h) O,(h,.)
joint one q 0

* During execution, each agent uses individual Q- [-~] [-~]
values to select actions

| |

0] 0Oy

Value decomposition networks (VDN)

Sunehag et al. — arXiv 17

* The first deep value function factorization/decomposition
method O(h,")

2

Q(hy,) Qn(hna)

* Represents joint Q-value as a sum of individual Q-
values:

Q(h,a) ~ ZQz(h%:aft) I I
RNN RNN
* Trains solely based on (joint) RL loss \ . y \ . y

L(0) =Eparos~d [(y — Z QY (hi, ai))z} where y =1+~ Z max QY (h},al)

* Simple, scalable, but limited joint Q-value representation

https://arxiv.org/abs/1706.05296

QM IX Rashid et al. — ICML 18 Q(;l,s,a)

{ Mixing J_S
network

* Extends VDN to represent monotonic functions

r 1
h ? n hn? n
Q(B, 2) ~ frono(@i(h,a1), . ., Qulhn, 0n) e T st
* (Implemented with positive weignts In mixer) 0,(h,,) 0. (h,,)
1 1
* Also, use state as input to mixer (with hypernetwork) [} [}
RNN RNN
* Still argmax over indiv. Q-functions and train based on the joint 1 1
loss
0 0,

L(0) =FEchsaros>~D [(y — Qﬁ(hj S, a))z] ~where y =1r + nyH_(h’, s',a),

and a' = (argmax Q1(hy,a7),...,argmax Q,(h,,a,))

!
ﬂ'l T

e Can't represent all Q-functions but still a state-of-the-art method

https://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf

IndiViduaI GIObaI'MaX (IGM) son et al.— ICML 19 (QTRAN)

Definition: Individual-Global-Max

For a joint action-value function Q(h,a) where h= (h4, ..., h,;) Is a joint action-
observation history, if there exist individual functions /Q,/ such that:

argmax, (1(h1,a1)

argmax Q(h,a) =

argmax, Qn(hn,an)

Then /Q,] satisfy IGM for Q at h

* This is the main principle of value factorization/decomposition methods: the
1@\rgn%ax of the joint value function is the same as the argmax of the individual Q-
unctions

* VDN and QPLEX satisfy this (as do QTRAN, QPLEX, etc.)

https://proceedings.mlr.press/v97/son19a/son19a.pdf

QP LEX Wang et al.— ICLR 21

Extends IGM to the advantage case

Definition: Advantage-based IGM

For joint and individual advantages:

A(h,a) = Q(h,a)-V(h) where V(h)= mng(h,a) and A4(h,a)= O.(h,a)-V.(h) where V.(h.)=maxQ,h,a;)

aj

For a joint action-value function Q(h,a% where h= (h4, ..., h,,) Is a joint action-observation history, if there
exist individual functions /Q./ such that:
argmax, Ai(hi,a;)
argmax A (h,a) =

| argmax, An(hnp,an)
Then /Q,] satisfy IGM for Q at h "

* This is subtle but important! Non-standard advantage makes them 0O for optimal action and negative
otherwise! Used as a constraint to represent the full IGM function class

https://openreview.net/pdf?id=Rcmk0xxIQV

QPLEX aI’ChitECtu '@ wangetal—icLR 21 O(h,s,a)

1
! Mixing ’ - 5
_ network
| . | | Yo
* Architecture is a bit complicated but it performs Aihps,ar) Vithi,s) Vi(hns) Ay(hy.s,a,)
well 1 1 1 1
S —b[Transformation 1][Transformation n]‘-
* Can sometimes outperform QMIX and is a 1 1 1 1
state-of-the-art method A)(ha) Vi(h) Al(ha,) V(h,)
L .. i1 1 | I |
* Other recent value factorization/decomposition O/hna) Oyha,)
methods but not clear they outperform QMIX factionselect T action select
and QPLEX Oihyy) Oulhyy)
1 1
[RNN] [RNN]
1 1

0 0,,

https://openreview.net/pdf?id=Rcmk0xxIQV

State in Value fu nCtiOn faCtOrizatiOn Marchesini et al.,--AAMAS 25

 |s it cheating/wrong to use state during training?

O(h,’)
]
- QMIX: Sound since state information gets ~ Mixing
marginalized out ' network | ™
| !
* Sound since similar to QMIX Oi1(h1,) Onlhyy)
1 1

* Less general with state (can't represent all IGM
functions) [RNN] [RNN]

. Probably not sound as uses ? "
separate state-conditioned weights 0, 0

Note: The paper also introduces a new algorithm DualMIX which | don’t discuss here

State in Value fu nCtiOn faCtOrizatiOn Marchesini et al.,--AAMAS 25

Why is the state helpful?

Benefit of state unclear in theory but may be
helpful in practice

(fine-tuned) 5510z

QMIX 15.8 = 0.4
14514
14.7 = 0.1

16.2 = 2.1
18.0 = 0.6
18.3 = 0.8

Tried the methods with state (s), a random (r)
value, or a 0 value

QPLEX

G N @ N N G

Other information can outperform state info!

CTDE Policy Gradient Methods

Centralized critics: MADDPG, COMA, and MAPPO

Actor critic with a centralized critic

Have an actor for each agent

Learn a ‘’centralized’ Q-function

Update each actor using this joint Q-value:

V%'J — 4:<:h,a:>~D [Qﬂ(h: a)v¢i log Wi(a’i‘hi)]

Update the joint Q-value using the joint info:

L(0) =

L<ha,rh/>~D

(y o Q(h: a))z:

, where y = r +~vQ(h’,a’)

A basic centralized critic approach

A policy network for each agent

A joint value network

Joint error calculation

The gradient using

['.’(9) - IE:'<h,a,fr',h">f\'D [(y - Q(ha a))2:| ’ where y=r + PYQ(h’: a’)

Loop over agents

Use joint Q to update agent policies

Algorithm 6 Independent Actor Centralized Critic (IACC) (finite-horizon)

1: Initialize individual actor models (a;|h;), parameterized by 1;
2: Initialize centralized critic model Q(h, a), parameterized by 6
3: for all episodes do

N e A A~

10:
11:
12:
13:
14
15:

16:;
17:
18:

19:
20:

hig < 0 {Empty initial history}
Denote h; as (h; o,..., s 0) {Notation for joint variables}
for all 7, choose a; ¢ at h; o from 7;(a;|h; o)

Store a; as (a1, - - -, An0)

fort =0toH —1do
Take joint action a;, see joint reward 7, and observations o,

forall:, h; 11 < h; 10,104 {Append new action and obs to previous history }
for all 7, choose a; ;1 at h; ;1 from m;(a;|h; ¢41)

Store a; 11 as (@141, .- -,0nt+1)

O < 14 + '}/Q(htﬂ, ap41) — Q(ht, a)) { Compute centralized TD error}

Compute critic gradient estimate: §;V,Q(hy, a;)

Update critic parameters 6 using gradient estimate (e.g., 0 < 6 + 55tV9Q(ht, a;) for

learning rate (3)

for each agent ¢ do
Compute actor gradient estimate: 'th(ht, a;)Vy, log m;(a; | hit)
Update actor parameters 1; using gradient estimate (e.g., ©¥; <+ ¥; +
ay'Q(h,a)V,, log m;(a;|h;,) for learning rate)

end for

end for

21: end for

MADDPG Lowe et al.—NeurlPS 17

* Designed for competitive or cooperative problems

* Off-policy (so uses reply buffer like DQN)

* Continuous action, so uses a Deterministic PG (Silver et al., ICML-14)
Vi, J = Eg anp [Vwipi(oi)VaQ“(:ﬁ,,a)

ﬂa::ﬁz'(ﬂi)]

* Defined policies based on a single observation but should be:
VIMJ = 4:m,amD [leﬂi(hz)VaQﬂ(h? El)

ﬂi:#i(hi)]

* Learn centralized critic from the reply buffer and using target network 6-
E(H) — 4:<ih.‘.a?r,h”>w'D |:(y o Qﬁ‘ (h:- a))g] ’ where Yy=r-+ P}/Qﬂ_ (h!: El!) ‘aizp,_(hi) Viel

* MADDPG is no longer widely used but the centralized critic have been adopted

Note: For the cooperative CTDE case we assume a single shared critic among agents, do not consider learning policy models of the other agents, and do not consider
ensembles of other agent policies to improve robustness.

https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf

Counterfactual Multi-Agent Policy Gradients
(COMA) Foerster et al.—_AAAI 18

* Centralized critic along with a counterfactual baseline to potentially help with variance
and credit assignment

* Calculate a per-agent advantage considering that difference between with the agent
did and the expected Q-value from policy and fixing other agents:

A;(h, a) Zm (a;|h;)Q(h,a;,a_;)

* |s implemented with agent ids to only reqmre a single centralized critic network (rather
than one per agent)

* On-policy so the critic is updated as usual: £ = t<h,a,r,hf>~p[(y— Q(h,a))Q],where y=r+vQ(k,a’)
* Policy network update uses A. instead of Q: 7' Ai(hy,a,)Vy, log mi(as | i)

* COMA is also not widely used but very influential

Note: COMA originally used state instead of history in the advantage and Q-values but this is incorrect as I'll discuss later.

https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf

MAP PO Yu et al. -- NeurlPS DB&B 22

* MAPPO is a form of a centralized critic method
 Just use PPO as the base RL method
* Actor loss: ﬁﬂéﬁppo(m) — min (Twi,iAaCﬁP(szm: 1 —¢€ 1+ E)A)
* Uses joint advantage: A(h,a) = Q(h,a) — V(h)
* Use GAE but can be computed from V as 6= r: + YV (hit1) — V(hy)

* Uses joint value function and local policy ratio: 7y, = ww (a3 7o)
i,0ld Nt

o Criticloss: £MAPPO(g) — max |(V(hy) — R)?. (ctip(V (), Vota(h) — €, Voua(h) +€) —))

* Can use other centralized info in the critic (more later)

* Simple, but works well and some form of this often works best

Note: actual details in the paper are unclear so this is a more general version

https://openreview.net/pdf?id=YVXaxB6L2Pl

I P PO de Witt et al. —arXiv 20

* Actor loss: Eiﬁfo(wi) = min (fr?pmA@-, clip(ry, i, 1 — €, 1 + e)A%-)

P Y

* Uses local advantage: A; =r, + fﬂZ(Mgm) — Vi(hiy)

* Can also use GAE or other methods (e.g., n-step)

T, (ai|h;)
Wﬁbigﬂgd (ﬂ“’i |h”1)

* Ratio same as before: ry,; =

* The only difference is the use of A; instead of A

* Critic loss (with clipping):

L'PPO(9) = max | (Vi(hiy)) — R)?, (clip(Vi(h@-,t)), Viold(hit)) — € Viaa(hit)) + €) — Rt)

* Often performs similarly to MAPPO but sometimes lower

5"

https://arxiv.org/abs/2011.09533

Contrasting Centralized and Decentralized Critics
N Multi-Agent Pollcy Gradient Lyu, Xiao, Daley and Amato — AAMAS21 Best Paper Nomination

* Centralized critic widely use but misunderstood
* We show in theory:
* Centralized Critic does not foster cooperation any better than Decentralized Critics
* Both unbiased estimates of the decentralized policy

* Centralized Critic exhibits more variance in policy gradient

* |n practice: [

—

Centralized

* Centralized Critic — less bias, more variance

000

Critic

—

* Decentralized Critics — more bias, less variance [

https://dl.acm.org/doi/10.5555/3463952.3464053

Multi-Agent Actor Critic

Decentralized and Centralized Critic

Initialize 0, ¢ Initialize 6, ¢
for each training rollout e do for each training rollout e do
Empty and fill buffer with experience data using actors m Empty and fill buffer with experience data using actors m
for Each batch t do for Each batch ¢ do
Unroll RNN using observations, actions and rewards Unroll RNN using observations, actions and rewards
"for each agent 7 do) " Calculate TD targets v, <«
Calculate TD targets y! ¢=¢—aVy(y: — Q(hg,a;))? // update critic weights X
¢i = ¢i — aVyi(y; — Q"(hi,a))® // update critic weights or each agent : do
_ 0'=0"+aVyilogn'(a| h})Q*(hi,a}) // update actor weights . 0*=0"+aVyilogm'(a | ht)Q(hs,a;) // update actor weights }
end for A end for
end for end for N
end for end for
Decentralized actor and critic: pretend the other agents are part of the Decentralized actor and centralized critic: update critic based on —/
environment (independent per agent) centralized Q-value and then update each agent’s actor
o o o
3 S 3

Q(hn,a,)

Learning Value Functions

* the return/value/action in the
joint/local action-history space

Reward signal

4

Decentralized Decentralized
Critic Critic

Centralized Ciritic

- § &

Action

4

4

Je(0;) =Eqn|Viogmi(a; | hi; 0;)Q7 (h,a; 9)]

4

Vo

= Eq, n, {V logmi(a; | hi; 0:)Eq_, 1n_, QT (s, h—y, ay, a,_i)]}

Both estimating and updating decentralized policies

Centralized and Decentralized Critic Performance
on StarCraft Multi-Agent Challenge (SMAC), Box Pushing, Particle environments, Target Capture, etc.

2s vs_lsc
1.0 ——y
Eos
ot
0.6
8
E 0.4
L
=02 — JAC
—— IACC
0.0
0 2 4 6 8 10
Episode (k)
4x4
1.0
E 0.8
[}
0.6
&
= 04
[+
[}
=02 — IAC
—— IACC
0.0
0 20 40 60 80
Episode (k)
10x 10
1 —— IAC
E08 — IACC
o1
& 0.6
&
=04
<
L
=02
0.0
0 105 210 315 420
Episode (k)
4x4
200
E 150
°
[~
é 100
s 0 — JAC
—— IACC
0
0 | 2 3 4
Episode (k)
Cross
100
w150
E
2
& 200
250 —
—— IACC
0 2000000 4000000 6000000

Steps

3m
1.0
£08
8
kPl
& 0.6
kA
E 0.4
=02 — JAC
— TACC
0.0
0 2 4 6 8 10
Episode (k)
6x6
1.0
£08
2
]
0.6
S
=04
[+
[}
= 0.2 — IAC
—TAGCC
.0
0 35 70 105 140
Episode (k)
12x 12
14 — JAC
50.8 —— TACC
o1
& 0.6
&
=04
[o]
L
=02
0.0
0 140 280 420 560
Episode (k)
6x6
200
£ 150
[P
(-
$ 100
=
= 0 —— IAC
— [ACC
0
0 | 2 3 4 5
Episode (k)
Antipodal
100
200
w
E
=]
2 300
400 S—A
—— JACC
0 2000000 4000000 6000000
Steps

283z
1.0 o
£08
8
[
95 0.6
&
‘é‘ 0.4
=02 = IAC
— JACC
0.0
0 2 4 6 8 10
Episode (k)
8x8
1.0
g 0.8
[}
0.6
&
o4
]
[}
=02 —— IAC
— JACC
0.0
0 70 140 210 280
Episode (k)
10x10
200
E 150
L
(=4
E 100
= 30 — IAC
— JACC
0
0 2 4 6
Episode (k)
8x8
200
150
[F]
&,
é 100
s 0 — JAC
— JACC
0
0 1 2 3 4 5
Episode (k)
Merge
-100 &
=200
w “300
E
o —400
[
=500
——RTAC
-600 ——TACC
0 1 2 3 4
Steps le6

4x4
200
150
L
(=9
$ 100
=
= — 1AC
——VJACE
0
0 1 2 3 4
Episode (k)
obs range 0.4
125
S 100
3
% 75
6
= 25 —— IAC
— JACC
0
0 200 400 600 800
Episode (k)
12x 12
200
E1s0
L
=7
E 100
= A —— JAC
— JACC
0
0 5 10 15 20
Episode (k)
10x 10
200
150
L
[
3 100
=
g 50
0
0 2 4 6
Episode (k)
Go Together
10
5 5
(5]
[
v —— TAC
= TACC
5
0.0 0.5 1.0 1.5 2
Steps le7

200

@O
S

100

50

Mean Test Return

Mean Test Return

Mean Test Return
wn
(=]

]
wn

o

200

Mean Test Return
= I
(=} (=1

W
[

100

80

60

40

Returns

20

6x6

—— JAE
— IJACC

2 3 4 5
Episode (k)

obs_range 0.6

= 1AC
—— JACC

200 400 600 800
Episode (k)

obs_range 1.0

— [AC
— JACC
200 400 600 800
Episode (k)
12:%12
— JAC
— JACC
5 10 15 20
Episode (k)
Find Treasure
——JAC
=—=TACC
2 4 6 8
Steps le6

8x8
200
S 150
D
e
$ 100
=
= 0 — IAC
— TACEC
0
0 | 2 3 4 5
Episode (k)
obs_range 0.8
125
S 100
5]
75
&
= 50
3
= 25 —— 1AC
—TACC
0
0 200 400 600 800
Episode (k)
obs_range 1.2
125
g 100
o
& 75
:
50
i
L
= 25 — IAC
——FACE
0
0 200 400 600 800
Episode (k)
12:x:12
300
S 250
& 200
B 150
=
g 100
§ =——lAC
50
——JACC
0
0 5 10 15 20
Episode (k)
10 Dec-Tiger
0 WW
w2
£ -10
2
[}
= _op
= MA@
—30 — IACC
0.0 0.5 1.0
Steps le6

Decentralized vs centralized critics

* Theoretically equivalent

* But that assumes learned critics

can be harder to learn -
* \When other agents change policies S S
: : Q(h,,a,
* Higher bias
* Centralized critics can be harder to learn -
Actor,
* Large domains (action, obs, agents) S

* Higher variance to marginalize out other agents

State-based Centralized Critics

State information is often available offline in a simulator

Critic

Implemented by pioneering Centralized Critic methods Q(s,a)

COMA (Foerster et al. 2018), MADDPG (Lowe et al. 2017)
Followed by later methods

SQDDPG (wang et al. 2020), LIIR (Du et al. 2019), LICA (zhou et al. 2020), VDAC-mIX (Su, Adams, and Beling 2021), DOP (wang et al. 2021) and
MACKRL (Schroeder de Wit et al. 2019)

Obvious Advantages of State-based Centralized Critic
Compact, Fully Observable
Obvious Disadvantages of History-based Centralized Critic
Complexity from (potentially long) time horizon
Complexity from combining observations (and actions) from multiple agents

Partially Observable

A Deeper Understanding of State-Based Critics

in Multi-Agent Reinforcement Learning Lyu. Baisero, Xiao and Amato — AAAI22

State-based critics in MARL are popular but misunderstood
We show In theory:
State-based critics may be biased compared to History-based Critics
State-based critics may produce higher variance
We show empirically:
Both critics work well in different domains
Common benchmarks lack partial observability
The state-history-based critic is robust to various domains

https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf

Centralized critics

Centralized critic
Conditions on history of all agents (joint history h)

Vidh =

Chrp(h),anm(h) (@ (B, @)V, log mi(ai; i)

State-based centralized critic
Conditions on the world state s

ViJ, =

4:"h,,Sf\J/O(h,s),ar\m'(h) [QW(*S? a’)vgi log 7 (ai; hz)]

Centralized critics

Actor,

Centralized critic
Conditions on history of all agents (joint history h)

Vidp = ‘Ehrvp(h),arv‘rr(h) [Qﬂ. (h7 a’)VHz' log 7; (a”i; hl)]

Actor,

State-based centralized critic
Conditions on the world state s
Vids = Eh,swp(h,s),aw‘n'(h) [Qw(sv a)ng. 108 Uy (afi; hz)]

Actor,

Actor,

History-state-based centralized critic
Conditions on the joint history h and world state s

Vs = <Eh,,srvp(h,s),a,rvﬂ'(h) [Qﬂ-(sv h, a’)vgi 1Og Ty (a”i; h’b)]

Actor,

Actor,

Experiments

Tested with advantage actor critic (A2C)
History critic

State critic

SMAC v1

State-history critic

Used standard domains: small common
domains, SMACv1 (Starcraft) and partially
observable particle environments

Have additional experiments and base actor-
critic methods In the paper

Partially observable particle envs

~J]
-

Evaluation Return
(@)
S

=10

Evaluation Return

ommon small environments

Meeting-in-a-Grid

100

90

80

70

Evaluation Return

60

—— SHC 50

0 100 200 300 400
Evaluation

Dec-Tiger

600

Evaluation Return
(§'S) N W
b= o o
S > >

N
S
-

——— SHC

0 100 200 300 400 500
Evaluation

Find Treasure

200 300
Evaluation

Box Pushing

(=,
0 100
G el@
HC
= »HC
0 100

200 300
Evaluation

SC
HC

— SHC

400

400

500

Evaluation Return

Evaluation Return
S N W W
> n S Ch

W
()]

100

100

Recycling

200
Evaluation

Cleaner

200
Evaluation

300

300

=———SHC
400

400

Mean Test Won %

SMAC - StarCraft Multi-Agent Challenge

100

80

60

40

20

HC
—— SHC

0 200

2s vs lsc

400
Evaluation

Mean Test Won %

600

100

80

60

40

20

800

HC
—— SHC

100

80

60

40

Mean Test Won %

20

1000

1c3s5z

200

0 200

400
Evaluation

600

800

1000

3m

400
Evaluation

Mean Test Won %

600

100

80

60

40

20

— S5C
HC
= SHC

800 1000

200

100 2837
— SO
20 HC
— SHC
5o
-
g 60
2
—~
§ 40
=
20 Vas
Y
0 % 200 400 600
Evaluation
bane vs bane
—_— SC
HC
— SHC

400 600 800
Evaluation

1000

800

1000

Partially Observable Particle Environments
Predator and Prey

Observation Radius = 0.8 Observation Radius = 1.6
120 120
—— SC — SC
HC HC
90 —— SHC 90 —— SHC
5 — 0OC — 0OC
QL
o
g 60 o 60 4
. ,
L
p=
30 30
0" 0 1000 2000 3000 4000 5000 6000 0

0 1000 2000 3000 4000 5000 6000

Evaluation ,
Evaluation

Dec-Tiger

5 mm SAWARAN
5 Wﬂ\\w \
-
- i
Benchmark problems LIy W,
» We need harder, more partially observable problems pl——allal
Methods to use

» Decentralized critics and (centralized) state-history-based often work
the best

 MAPPO paper had a similar result
* Not really clear why
CTDE

* What is the best way to perform centralized training for decentralized
execution (that's both principled and performs well)?

Takeaways

(a) Dec-Tiger (Nair et al. 2003)

Other CTDE methods

* Many other extensions and approaches:

* E.g., FACMAC: Use a factored critic (doesn't need IGM) (Peng et al., 2021)
* Parameter Sharing
* Alternating learning

°* (Banerjee et al., 2012, Su et al., 2024)

* Sequential agent updates as in HATRPO and HAPPO (Kuba et al. 2022)

* Other agent modeling, e.g., LOLA (Foerster et al. 2018a)

Other topics

Many other topics in (cooperative) MARL that we don’t have time to cover

* Communication (Zhu et al., 2024)

* Ad hoc teamwork (Mirsky et al., 2022),
* Model-based methods (Wang et al., 2022)

* Exploration, offline methods, model-based methods, hierarchical methods, role
decomposition, multi-task approaches, efc.

https://link.springer.com/article/10.1007/s10458-023-09633-6
https://link.springer.com/chapter/10.1007/978-3-031-20614-6_16
https://arxiv.org/abs/2203.10603

Applications

A" | Observation:

t-=11. number of vehicles 4 Centralized Computer b
2. number of halted vehicles

R k1 ed of vehices | 0 CTTTToTTTTo o T o T T S
[et R —— 1]
LY N Value
... . Decentralized Policies Network
E!ID-' :I::)-- collect states update

observation
range

Delivery
location

o Action:
o Select a phase
i from the list of

....| available phases a.]
' 0

Multi-Agent Environment (Traffic System)

‘| Reward:

| Total number of
halting vehicles
| in the network

.| (penalty)

locations

[2] Aiphastar v 177
¥ 147

NSNS S Multi intersection
P. k \:\,\2‘\" \q 5
ICker L traffic signal network

agent (BO ka d ee t al 2 O 2 3) (b) An example of DTDE scheme

* Video games (e.g.,AlphaStar (Vinyals e Traffic signal control (e.g., survey by
et al., 2019) Wei et al. 2021)

* Centralized MARL for a team * Autonomous vehicle control (e.g.,

o survey by Zhang et al. 2024)
* Warehouse robots (Krnjaic et al. 2024)

. . * Power systems, eftc!
* Hierarchical CTDE approach

Multi-agent RL with macro-actions

Xiao, Hoffman, Xia and Amato — ICRA20

https://ieeexplore.ieee.org/document/9196684

Benchmarks

e Standard domains:

* Overcooked (PyTorch and JAX) -

* SMAC v1 and v2 (PyTorch and JAX)

* Many many more inspired by applications

Environments and code

* PettingZoo
* Multi-agent version of gym
* |nterface and some environments

* https://pettingzoo.farama.org/

e JAXMARL
* Efficient (JAX-based) baseline methods and environments

* https://qgithub.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax

* BenchMARL
* PyTorch baseline methods and environments

* https://qithub.com/facebookresearch/BenchMARL

e Several more...

https://pettingzoo.farama.org/
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax

Develop a Software
Gomoku game Oo
T
r 1
Tk
- 2

MARL and LLMs

* RL is widely used for LLMs

v.'\

am

* MARL is not currently used for multi-agent LLMs (to best of my
knowledge)

* There is no reason it couldn’t be P 2 [
* QOpen questions
* Use cases
* Control scheme
* MARLHF
* Training

* Benefits: specialization, robustness, scalability/performance

e Disconnect between academia and industry https://www.microsoft.com/en-us/research/project/autogen/

Conclusion

* Cooperative multi-agent reinforcement learning is a very general setting that
fits with lots of applications

* A lot of work cooperative MARL
* Centralized training and execution
* Decentralized training and execution
* Centralized training for decentralized execution (CTDE)

* Academia and industry are working on improved methods to improve
scalability and performance

Conclusion

* Many open questions
* MARL for LLM agents
* Very scalable MARL
* Optimal MARL
* How to best do CTDE

* Multiagent approaches to ML (e.g., GANs, decentralized methods)

Our resources

* Dec-POMDP book
* Background on models and planning methods

* Book draft (An Initial Introduction to Cooperative
Multi-Agent Reinforcement Learning):

https://arxiv.org/abs/2405.06161

* Let us know what you think and what should be
changed/added for the final version!

* Slides will be available

* https://www.khoury.northeastern.edu/home/ca
mato/tutorials.html

SPRINCER BRILAS I INTHLLIGINY

A Concise

POMDPs

Contents

[

Introduction

LI Owerview 0.0 i
1.2 The cooperative MARL problem: The Dec-POMDP 0.
1.3 Background on (single-agent) reinforcement leatning oL L0 L.

1.3.1
1.3.2

Valoe-based methods00 oL Lo oo oo o
Policy gradient methods Lo Lo oo

Centralized training and execution (CTE)

21 CTEOVEIVIEWt i it e e b e
22 Centralized modelso
23 Centralized solulions 0oL L i e e e e e e e
24 Improving scalability Lo

Decentralized training and execution (DTE)
31 DTEOWEIVIEW o 0t 0 et e
3.2 Decentralized, value-based methods L. oo Lo

i1l
322
323

Independent Q-learning (TQL)
Improving the performance of IQLo o000
Deep extensions, issues, and fixeso L. Lo oo

3.3 Decentralized policy gradient methodso 0oL o oo

13l
332
333

Decentralized REINFORCE0 00000 ..
Independent actor critic (IAC) Lo oo
Other decentralized policy gradient methods 0000

34 Othertopics L e e e e e e e e e e e e

Centralized training for decentralized execution (CTDE)
4.1 CTDEOVEIVIEW o 0 i e i ot et e
4.2 Walue function factorizationmethodso

421
421
423
424
425
426

)
L8] 5
Weighted QMIX Lo
OTRAN . . . e e e e e e e e e e e e
L 0
The use of state in factorization methods

4.3 Centralized criticmethods L L oL L L Lo e

431

Preliminaries 0 . 0 0 e e e e e e e e e e e e e e e e e

15
15
16
17
18

Introduction to
Decentralized

ST

] Spfingﬂ

CONTENTS

4.3.2 Abasic centralized criticapproach 000000 43
433 MADDPG, 47
434 COMA ittt iaaaaaaaaaaancrennrann 48
435 MAPPO0ttt e aaaananaanntianarann 48
436 State-basederitics L Lo 50
4.3.7 Choosing different types of decentralized and centralized critics 51
438 Methods that combine policy gradient and value factorization 51
439 Other centralized criticmethodso 0000000 52

44 Otherformsof CTDE oo, 52
441 Adding centralized information to decentralized methods 52
4.4.2 Decentralizing centralized solutions L0 53
Conclusion 55
5.1 Topics notdiscussedo 55
5.2 Evaluationdomains . . . oL Lo 55
53 Applicationso 55
54 Futuretopicsl 56

https://arxiv.org/abs/2405.06161
https://www.khoury.northeastern.edu/home/camato/tutorials.html
https://www.khoury.northeastern.edu/home/camato/tutorials.html

	Slide 1
	Slide 2: Multi-agent systems are (going to be) everywhere
	Slide 3: Reinforcement learning has a number of successes
	Slide 6: Multi-agent RL has had some successes
	Slide 7: Multi-agent RL is hard
	Slide 8: Overview
	Slide 9: Cooperative MARL
	Slide 10: Cooperative MARL
	Slide 11: Cooperative MARL
	Slide 12: General MARL
	Slide 13: Centralized MARL
	Slide 14: Centralized MARL
	Slide 15: Centralized MARL (partially observable)
	Slide 16: Centralized MARL (fully observable)
	Slide 17: Centralized MARL (DRQN version)
	Slide 18: Centralized MARL methods
	Slide 19: Decentralizing centralized solutions
	Slide 20: Decentralized MARL
	Slide 21: Decentralized MARL
	Slide 22: Decentralized MARL
	Slide 23: Decentralized Action-Value Methods
	Slide 24: Independent Q-Learning (IQL)
	Slide 25: Independent Q-Learning (IQL)
	Slide 26: Important hidden information
	Slide 27: IQL properties
	Slide 30: Extension to the deep case - IDRQN
	Slide 31: Extension to the deep case - IDRQN
	Slide 32: Decentralized MARL (Dec-HDRQN)
	Slide 33: Decentralized Hysteretic DQN (Dec-HDRQN)
	Slide 34: Other deep decentralized methods
	Slide 35: Decentralized Policy Gradient Methods
	Slide 36: Decentralized REINFORCE
	Slide 37: Independent actor critic (IAC)
	Slide 38: Other decentralized PG methods
	Slide 39: Other topics
	Slide 40: Centralized Training for Decentralized Execution (CTDE) MARL
	Slide 41: Centralized training for decentralized execution (CTDE)
	Slide 42: Centralized training for decentralized execution (CTDE)
	Slide 43: CTDE Action-Value Methods
	Slide 44: Value function factorization methods
	Slide 45: Value decomposition networks (VDN)
	Slide 47: QMIX
	Slide 48: Individual Global-Max (IGM)
	Slide 49: QPLEX
	Slide 50: QPLEX architecture
	Slide 51: State in value function factorization
	Slide 52: State in value function factorization
	Slide 53: CTDE Policy Gradient Methods
	Slide 54: Actor critic with a centralized critic
	Slide 55: A basic centralized critic approach
	Slide 56: MADDPG
	Slide 57: Counterfactual Multi-Agent Policy Gradients (COMA)
	Slide 58: MAPPO
	Slide 59: IPPO
	Slide 60
	Slide 61: Multi-Agent Actor Critic
	Slide 64: Learning Value Functions
	Slide 65
	Slide 67: Decentralized vs centralized critics
	Slide 68: State-based Centralized Critics
	Slide 69
	Slide 70: Centralized critics
	Slide 71: Centralized critics
	Slide 76: Experiments
	Slide 77: Common small environments
	Slide 78: SMAC - StarCraft Multi-Agent Challenge
	Slide 79: Partially Observable Particle Environments
	Slide 80: Takeaways
	Slide 81: Other CTDE methods
	Slide 82: Other topics
	Slide 83: Applications
	Slide 84: Multi-agent RL with macro-actions
	Slide 85: Benchmarks
	Slide 86: Environments and code
	Slide 87: MARL and LLMs
	Slide 88: Conclusion
	Slide 89: Conclusion
	Slide 90: Our resources

