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The Hyperscale Revolution of Deep RL

Unlock #1: Faster, diverse Eval (and curriculum learning)
Unlock #2: Theory Inspired, simpler RL

Unlock #3: Theory Inspired, scalable Meta-RL

o Discovering RL Algorithms

e Bonus: Al Scientist — doing e2e science.. !

Note: this is a bit of a “choose your own adventure” talk.
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A tale of two revolutions: #1 The Deep Learning Revolution

AleXNet A 10 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

AlexNet is the name of a convolutional neural network (CNN) el Y

architecture, designed by Alex Krizhevsky in collaboration [ image: 28 (height) x 28 (width) x 1 (channel) | [Image: 224 (height) x 224 (width) x 3 (channels)|

with ”ya Sutskever and Geoﬁrey Hmton! who was ] Convolution with 5x5 ke;nel+2padding:28x28x6 | \Convolution with11x11k'érnel+4stride:54x54x96\

, sigmoid » RelLu
| Pool with 2x2 average kernel+2 stride: 14x14x6 | | Pool with 3x3 max. kernel+2 stride: 26x26x96 |

Krizhevsky's Ph.D. advisor at the University of Toronto.!'ll?]

| Convolution with 5x5 Kernel (no pad):10x10x16 | | Convolution with 5x5 kernel+2 pad:26x26x256

AlexNet competed in the ImageNet Large Scale Visual | sigmoid | ReLu
g 3 | Pool with 2x2 average kernel+2 stride: 5x5x16 | | Pool with 3x3 max.kernel+2stride:12x12x256 |
Recognition Challenge on September 30, 2012.1°] The ‘ . : 7 |
: X o Dense: 120 fully connected neurons Convolution with 3x3 kernel+1 pad:12x12x384
network achieved a top-5 error of 15.3%, more than 10.8 | oo ! ¥ FloLu |
: Dense: 84 fully connected neurons Convolution with 3x3 kernel+1 pad:12x12x384
percentage points lower than that of the runner up. The Peomon Preti
original paper's primary result was that the depth of the ] Dense: 10 fully connected neurons | | Convolution with 3x3 kernel+1 pad:12x12x256 |
v v RelLu
model was essential for its high performance, which was Output: 1 of 10 classes | Pool with 3x3 max.kernel+2stride:5x5x256 |
v flatten
computationally expensive, but made feasible due to the | Dense: 4096 fully connected neurons |
- . . " y . v ReLu, dropout p=0.5
utilization of |graph|cs processing units (GPUsj during [ Dense: 4096 fully connected neurons |
. 2 v ReLu, dropout p=0.5
tralnlng.[ ] \ Dense: 1000 fully connected neurons |

Output: 1 of '1000 classes

https://en.wikipedia.org/wiki/AlexNet




2: The Deep RL Revolution..

R

Safer path |
Optimal path ’[ *l
S The Cliff G
“Reinforcement Learning — An Introduction”, “Playing Atari with Deep Reinforcement Learning”,

Sutton and Barto Mnih et al, NIPS Deep Learning Workshop 2013
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Volodymyr Mnih 2 FoLLow

DeepMind
Verified email at cs.toronto.edu - Homepage

Machine Learning

TITLE CITEDBY YEAR
LOO kl ng baCk 1 2+ Human-level control through deep reinforcement learning 30723 2015
V Mnih, K Kavukcuoglu, D Silver, AA Rusu, J Veness, MG Bellemare, ...
yea rs |ate|"_ . Nature 518 (7540), 529-533
Playing Atari with Deep Reinforcement Learning 15140 2013

V Mnih, K Kavukcuoglu, D Silver, A Graves, | Antonoglou, D Wierstra, ...
arXiv preprint arXiv:1312.5602

Alex Krizhevsky

University of Toronto
Verified email at cs.toronto.edu - Homepage

Machine Learning

TITLE CITEDBY YEAR
Imagenet classification with deep convolutional neural networks 158869 | 2012

A Krizhevsky, | Sutskever, GE Hinton
Advances in neural information processing systems 25
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RL's Computational Inefficiency Problems

RL typically requires policy rollouts to happen in environments written for the CPU
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From Computational Inefficiency to Algorithmic Complexity:

Environment steps . Forward pasi t 0. Ea:k\:a:d pasi ) ® D|ff|Cu|t to keep the GPU
4 time steps Agtgi 1 FH u ...ﬁex o 17 ”
' 1 busy
Aetor 2 | | ‘ . ‘ | I l Actor { PETEAEE e Data gets stale
e e — e Algorithmic and Engineering

Actor 7

(a) Batched A2C (sync step.)

| Complexity
4 time steps R
Actor 0 FEFESESE EEECECESECE -
W W
Actor 3 PR EEEE (c) IMPALA

(b) Batched A2C (sync traj.)

“‘IMPALA: Importance Weighted Actor-Learner Architectures”, L Espeholt et al ———
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What else does this mean? Example: Hanabi!




What else does this mean? Example: Hanabi!

Slow: “..Training a Rainbow agent for the sample limited regime of 100 million
steps took approximately seven days using an NVIDIA V100 GPU.” [1]

e 165 steps / second on an NVIDIA V100

Expensive: “.. agents for 20 billion steps. We estimate the computation took 100
CPU years for a population size of 30.. “ [1]

e 190 steps / CPU second

1: “The Hanabi Challenge: A New Frontier for Al Research”, Bardt et al, ht’[ps://arxiv.org/pdf/1902.00506’/J




What else does this mean? Example: Hanabi!

e —————
i -
- i

Hyper-engineered: requiring C++ for env e B e 33y
and training loop with complicated thread Thiead ',' o
handling (Player1 ]\ [ Player1 ] [ Player1 )

I Environment nEnvironment I Environment | R;;ilg;itgjf?er
(Player2 ) /[ Player2 ) (Player2 )
y A

N\ \ / A /
\- S/

Send observation
Receive action

Batch of
Trajectories

R

However, this achieves roughly 12.000 Batching Layer ] e
SPS on 3 GPUs. s

Inference Loo
P Training Model ]

[ Inference Model Sync Model

“Off-Belief Learning”, Hu et al FLAIR
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Take-Away:
Deep RL had lost the "Hardware Lottery”

V\/
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A Path Forward:

The Second Coming of the
GPU (to deep RL)




The solution:
What if we run everything on the GPU instead? Wouldn't this be difficult?

P e

E [ Loas J gradient update
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Solution; Jax!

Chris Lu

ntific computing

Scie/

\

/

)

Composable Transformation Functions

Just in time (JIT) compilation

Auto Vectorization —‘;,"'
Auto differentiation p;, /(¥ +AY) = f(x)
Ax—0 Ax

Processors

Auto Parallelization

= Time/




Solution: Jax vmap!

Chris Lu

OX.Vmap
———p

V\/
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Achieving 4000x Speedups
and Meta-Evolving
Discoveries with PureJaxRL

Scaling Up: PureJaxRL

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Chris Lu University of Oxford, April 3, 2023 arXiv
Foerster Lab for Al

NORMAL
RITRAINING

MULTIPLE 0 o
ar History
ENVIRONMENT,
THREADS ON CPUS
500
ENVIRONMENTS j4
o
ONGPUS
g
200
):TO:END} 100
\ DRIZED F
!
Y months 8 months 12 months
Timeline % star-history.com

Chris Lu



PureJaxRL Speedups

Total Training Time for CartPole-v1

2000 -

1500 A

1000 A

Number of Agents

500 ~

—— NVIDIA A40 GPU
—— NVIDIA A100 GPU

—-==- Time to Train a Single CleanRL Agent
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Total Training Time for MinAtar-Breakout
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100 A
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~——— NVIDIA A100 GPU
—-=~ Time to Train a Single CleanRL Agent

100
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Figure 3: CleanRL vs. Our Jax PPO on CartPole-v1 and MinAtar-Breakout. We can parallelise the agent training itself!

On CartPole-v1 we can train 2048 agents in about half the time it takes to train a single CleanRL agent!

Chris Lu
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H#1:

N
Faster, diverse Eval

(and curriculum discovery)



KINETIX: INVESTIGATING THE TRAINING OF
GENERAL AGENTS THROUGH OPEN-ENDED
PHYSICS-BASED CONTROL TASKS

Michael Matthews™ Michael Beukman® Chris Lu Jakob Foerster
FLAIR, University of Oxford

ICLR 2025 Oral
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Unified Goal

Make the shape touch the shape,

without it touching the red shape

Can we learn a _foundation model_ for

decision making?
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Interlude: Curriculum learnina

No Regrets: Investigating and Improving Regret

. . . . == SFL
Approximations for Curriculum Discovery L o
80| e ACCEL-MaxMC
et PLR-PVL
Alex Rutherford®* Michael Beukman* === PLR-MaxMC

60

Timon Willi Bruno Lacerda Nick Hawes Jakob Foerster

\l eu rl P S 2 O 2 4 University of Oxford

40

20

Avg Win Rate % on worst-case a% level

1% 10% 100%

s
(a) Minigrid (b) JaxNav (c) Real World (Source: [18])
Figure 1: JaxNAV (b) brings UED, often tested on Minigrid (a), closer to the real world (c

P*(1-P) (SFL) rocks




Interlude: Curriculum learni ng Learning to Reason at the Frontier of Learnat

Thomas Foster *! Jakob Foerster ! 2
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Fine-Tuning Results (..cause that’s what you can do with a foundation model.. )

Solve Rate

1.0

o
n

All L tasks

== Tabula Rasa
= Fine-Tuned
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JaxMARL: Multi-Agent RL Environments in JAX

Alexander Rutherford!* T, Benjamin Ellis!* *, Matteo Galliciz'T, Jonathan Cook!*, Andrei Lupul', Gardar Ingvarsson3‘,
Timon Willil*, Akbir Khan3, Christian Schroeder de Witt!, Alexandra Souly?, Saptarashmi Bandyopadhyay?*,
Mikayel Samvelyan3, Mingqi Jiang3, Robert Tjarko Langes, Shimon Whiteson!, Bruno Lacerda!, Nick Hawes!,

Tim Rocktischel®, Chris Lu!* ‘L, Jakob Nicolaus Foerster!

University of Oxford 2Universitat Politécnica de Catalunya 3UCL *University of Maryland >Technical University Berlin

:= README.md Va

python 3.8 | 3.9 | pypi package |0.0.2 CO Open in Colab

Installation | Quick Start | Environments | Algorithms | Citation

(Slides from
Chris Lu)

LAIR



JaxMARL - So far Eight Environment Suites

- MPE
&~ o .
Jbls
MABrax

None

Day 3

Riddle

Tell

O O
P B

Day 4

Prisoner’s

> Coingame




Environment Speedups

Table 2: Benchmark results for JAX-based MARL environments (steps-per-second) when taking random actions. All environ-
ments are significantly faster than existing CPU implementations.

Environment Original, 1 Env Jax, 1 Env Jax, 100 Envs Jax, 10k Envs Maximum Speedup
MPE Simple Spread 8.34 x 10* 548X 10° 524 10° 3.99 x 107 4.78 x 10°
MPE Simple Reference 1.46 x 10° 5.24x10°  4.85X 10° 3.35 x 107 2.29 x 102
Switch Riddle 2.69 x 104 6.24x 103 7.92x10° 6.68 X 107 2.48 x 103
Hanabi 2.10 x 103 1.36 x10°  1.05x 10° 5.02 x 10° 2.39 X 103
Overcooked 1.91 x 103 3.59%x10%  3.04 x10° 1.69 x 107 8.85 % 103
MABrax Ant 4x2 1.77 x 103 2.70 X 102 1.81 x 10* 7.62 % 10° 4.31 x 102
Starcraft 2s3z 8.31x 10! 537 %1042 453 x 104 2.71 X 106 3.26 X 104
Starcraft 27m vs 30m 2.73 % 101 1.45x 102 1.12x 10% 1.90 X 10° 6.96 X 103
STORM - 2.48x10°  1.75% 10° 1.46 x 107 -
Coin Game 1.97 x 104 4.67x103  4.06 x 10° 4.03 x 107 2.05 x 103
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http://www.youtube.com/watch?v=GOutN3hWAcc

Speed

...e.g.
20k SPS on Hanabi

/

Ease of Use

...Python based

Wide Range of
Environments

...And growing
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See our repo and blog post for more information

JaxMARL: Multi-Agent RL
Environments and Algorithms
in JAX

JaxMARL  Public <2 EditPins ~ ®Unwatch 11 ~ % Fork 17 - Starred 192
AUTHORS AFFILIATIONS PUBLISHED FULL PAPER
Alex Rutherford, Ben University of Oxford Nov. 17, 2023 arXiv
Ellis, Chris Lu # main ~ ¥ 30branches © 2tags Go to file Add file ~ <> Code ~ About
Multi-Agent Reinforcement Learning
e amacrutherford overcooked multiple seeds 8665ca2 2 hours ago '@ 448 commits with JAX
o . | .github/workflows Create python-publish.yml| 2 weeks ago @ Readme
verview 58 Apache-2.0 license
W baselines overcooked multiple seeds 2 hours ago
A~ Activity
" . " . " d i dd docii 3d
We present JaxMARL, a library of multi-agent reinforcement learning (MARL) environments B docsfimgs adcnew cocimages aysiado Y¢ 192 stars
and algorithms based on end-to-end GPU acceleration that achieves up to 12500x W jaxmarl Merge branch 'main' into glearning last week ® 11 watching
speedups. The environments in JaxMARL span cooperative, competitive, and mixed games;
P R P P ! P ! 9 ' ] requirements updates for flashbax last week ¥ iorks
discrete and continuous state and action spaces; and zero-shot and CTDE settings. We Report repository
specifically include implementations of the Hanabi Learning Environment, Overcooked, Multi- l tests name change to jaxmarl 3 weeks ago

Agent Brax, MPE, Switch Riddle, Coin Game, and Spatial-Temporal Representations of Matrix
Games (STORM). Because of JAX's hardware acceleration, our per-run training pipeline
is 12500x faster than existing approaches. We also introduce SMAX, a vectorised version
of the popular StarCraft Multi-Agent Challenge, which removes the need to run the StarCraft
Il game engine. By significantly speeding up training, JaxMARL enables new research into
areas such as multi-agent meta-learning, as well as significantly easing and improving
evaluation in MARL. Try it out here: https://github.com/flairox/jaxmarl!




JAX-LOB: A GPU-Accelerated Limit Order Book Simulator to
Unlock Large Scale Reinforcement Learning for Trading

International Conference on Al in Finance: ICAIF'23
Best Academic Paper

Sascha Frey, Kang Li, Peer Nagy, Silvia Sapora, Chris Lu,
Stefan Zohren, Jakob Foerster, Anisoara Calinescu

EN Roarsted '&‘ (Slides from
ab for
LAIR Research OXFORD 3 Sasha Frey)

-—
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The Financial Markets are a complex multi-agent System
Limit Order Book

lative price [bp]
0 5 0 5 0
g 8 best bid orders best ask orders
=6 . .
i, y Interesting Emergent Dynamics
) 1
é 2 qlg o 11,000
5
o) : by rln 1 a2 az als
g% —— 10,800
:
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g 10,400
0 015 020
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JAX-LOB Benefits: 75x Speed-Up Over CPU Equivalent

Automatic parallelisation: major benefit for RL since the entire training loop is GPU
native. Similar speed-up expected for Monte Carlo methods

RL training for trade execution

6000

4000

Steps per second

2000

74

JAX-LOB CPU-LOB

uuuuuuu

OXFORD
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Interlude 1:

Generative Al for End-to-End Limit Order Book Modelling

A Token-Level Autoregressive Generative Model of Message Flow Using a Deep State Space Network

Peer Nagy
peer.nagy@eng.ox.ac.uk

Oxford-Man Institute of Quantitative

Finance, University of Oxford
UK

Kang Li

Department of Statistics, University

of Oxford
UK

Sascha Frey
Department of Computer Science,

University of Oxford
UK

Anisoara Calinescu
Department of Computer Science,
University of Oxford & Alan Turing
Institute
UK

Jakob Foerster
Foerster Lab for Al Research,
University of Oxford
UK

Silvia Sapora
Foerster Lab for Al Research,
University of Oxford
UK

Stefan Zohren

Oxford-Man Institute of Quantitative

Finance, University of Oxford &
Man Group
UK



A Token Level Order-Book model based on the S5 state-space model.

new referenced
message message
g e e e =N == S
______________________________ //// \\\\ //// \\\\
deletion of limit :
order d 43| 1 -9 100 0.098540237 34533.646824768 -8 100 34532.929650457

.............................. 2 -

type direction price size A time time price A size time

1005 12010 12007 11016 1107 3101 543 240 37 536 649 827 771 12007 11015 1107 37 535 932 653 460

I ~ T L T e
sign & rel. price  : shared cancelled
level : : vocabulary : : size




: [masked]
i message
; sequence

. order book :
. sequence

t=t+1

Token Generation Loop

S5 Message

Module

Combined S5
Module

sample
token

S5 Book Module /

4

LOB Simulator
b(t+1) = sim(b(t), m(t))

Yes

Error correction
success?

Message Generation Loop

No

m(t+1)
complete?

Yes




Craftax: A Lightning-Fast Benchmark for Open-Ended Reinforcement Learning

Michael Matthews ! Michael Beukman' Benjamin Ellis' Mikayel Samvelyan?> Matthew Jackson !
Samuel Coward' Jakob Foerster '

ICML 2024 - Spotlight Poster



Michael Beukman' Benjamin Ellis"2 Mikayel Samvelyan3

Matthew Jackson'2 Samuel Coward' Jakob Foerster?

TELAIR, University of Oxford 2 WhiRL, University of Oxford 3 DARK, University College London



Steps per Second

Blazing Fast Challenging...

® Craftax-Classic
® Craftax 16 s PPO-RNN
105 ® Procgen mmsm PPO
® NetHack 14 mm ICM
® Crafter W E3B
® MineRL —~ 12| 'mmsm RND
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GPU Acceleration + (some)
Theory =

Simplified Reinforcement
Learning




Simplifying Deep Temporal Difference Learning

Matteo Gallici* ! Mattie Fellows*2
Benjamin Ellis>  Bartomeu Pou’>  Ivan Masmitja*
Jakob Nicolaus Foerster?  Mario Martin'
1Universitat Politécnica de Catalunya ~ ?University of Oxford
3Barcelona Supercomputing Center 4 Institut de Ciéncies del Mar
{gallici,mmartin}@cs.upc.edu
{matthew.fellows,benjamin.ellis, jakob.foerster}@eng.ox.ac.uk
bartomeu.poumulet@bsc.es masmitja@icm.csic.es

ICLR 2025 spotlight




Part 1: Analysing and Stabilizing TD....

Why is TD so unstable? It’s not a gradient of anything

How can we analyse TD? Using the Jacobian

How can we stabilise TD?
By introducing and LayerNorm
+ L2 regularisation

Slide by: Mattie Fellows



Theoretical insights - read the paper for details

1) Batchnorm layers make the policy myopic:
Theorem 1. Under Assumption 1, using the BatchNorm @Q-function defined in Eq. (3)
My oo Ezynde [B[Qo] (2¢)] = Ern Py ()2, ~dw [T] almost surely.

2) LayerNorm + L2 regularisation instead mitigates Off-Policy Instability:

Theorem: Under mild regularity assumptions, using the k width LayerNorm Q

-function:
| (r(5, @) +70,(55.@) = Qu(5,) xT V20, (s, @)x| ( i )
/12 vk /N Shrinks with
almost surely for a test vector x and any s,a, s’,a’ increasing k




Tabular Validation

Baird’'s counterexample:

Simple MDP with linear function
approximator and off-policy
sampling

’ = | ! |
4 | ! | | |
i v v v
]
1
1
1
1
‘\
\
\
\ m(solid|-) = 1
\
\ b(dashed|-) = 6/7
‘\
\
\ -
\ 2
% 5 :; )

b(solid|-) = 1/7
v=0.99

Loss (log)

—
=

- LayerNorm /
—— LayerNorm+L2

——— No-Normalization

—— No-Normalization+L2 /

0 5000
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Part 2: Simplifying Temporal Difference Learning

' Actors Learner
- New Experlencen N
‘—ﬁ Environment q Vectorized
; Environment _]
Interact Learning RB?#::, il I Batched Learning
Experience Intelraq | %i%:: jmng Interact Batch
~ Agent Agent < Leaming Agent Batch L— Agent <«
Batch Agent
(a) Online (Q-Learning (b) DQN (c) Distributed DQN (d) PQN

fraR



No Target network, no replay — just TD Learning

Algorithm 1 PQN (s, a, s’, r, target are B-dim vectors)

1: ¢ < initialise regularised ()-network parameters

2: s < intial state sg ~ Py,

3: for each episode do

4:  for each i € B (in parallel) do

s e {ai ~ Unif(A), , with pr.ob. €,
arg max, Q4(si,a’), otherwise,

6 sty 1 < 8; ~ Pgs(s;,a;),7; ~ Pr(s;,a;),

7 target, <— 7; + y1(not terminal) max, Q4(s;,a’)

8:  end for

9: ¢+ ¢ — aV,|StopGrad[target] — Q4 (s, a)]|?

0

10: end for




The sampling regime of PQN

T ~ dﬂ't/




Results
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(d) Speed Comparison

A competitive and simple
algorithm!
Q-learning is back!







#3: GPU Acceleration +
(some) Theory =

Scalable Meta - RL



Mirror Learning Framework (ICML 2022)

Mirror Learning: A Unifying Framework of Policy Optimisation

Jakub Grudzien Kuba! Christian Schroeder de Witt! Jakob Foerster

Slides from Chris Lu I?ﬁ




Mirror Learning: The Update Formula (Simplified)

At every iteration, maximize

4:aN7Tnew [Qﬂ'old (87 a)] o gﬂ'old (WHCW‘S)

Drift Function




Mirror Learning: Properties

Theorem 1 (The Fundamental Theorem of Mirror Learn-
ing). Let DY be a drift, N be a neighbourhood operator,
and the sampling distribution (3, depend continuously on
m. Let mo € I, and the sequence of policies (m,)_, be
obtained by mirror learning induced by ©¥, N, and ;.
Then, the learned policies

1. Attain the strict monotonic improvement property,

van ' ()

Br..(s)

n(ﬂ-n"l'l) 2 n(ﬂn) + IES'\'d D"‘n (7Tn+1|s)

2. Their value functions converge to the optimal one,

lim V, =V%*

n—o0

3. Their expected returns converge to the optimal return,
lim 5{(me)= 0"
n—00

4. Their w-limit set consists of the optimal policies.




Space of RL Algorithms

Mirror Learning Space

Figure 1. Known RL frameworks and algorithms as points in the
infinite space of theoretically sound mirror learning algorithms.




Space of RL Algorithms

Mirror Learning Space

Figure 1. Known RL frameworks and algorithms as points in the
infinite space of theoretically sound mirror learning algorithms.




Discovered Policy Optimisation

Chris Lu* Jakub Grudzien Kuba* Alistair Letcher
FLAIR, University of Oxford BAIR, UC Berkeley aletcher.github.io
christopher.lu @exeter.ox.ac.uk kuba@berkeley.edu ahp.letcher@gmail.com
Luke Metz Christian Schroeder de Witt Jakob Foerster
Google Brain FLAIR, University of Oxford FLAIR, University of Oxford
Luke.s.metz@gmail.com cs@robots.ox.ac.uk jakob.foerster@eng.ox.ac.uk

NeurlPS 2022
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A Meta Learning Approach

At every iteration, maximize

4:a’\JTFnew [Qﬂ'old (87 a)] o gﬂ'old (WHCWIS)

/ Drift Function

Parameterise as a neural
network, ¢, compliant with theory




How to estimate
Sample population Meta-Gradients?

of n candidates {¢}

v

Train an RL agent Train an RL agent
with drift function with drift function

¢° to get 6° l ™" to get o™

v

v v

Fitness is return Fitness is return
of 6° of 9™

1
vd)]EeNN(O,I) [F(Qb T 0'6)] = ;EGNN(O,I) [F(¢ vy 0'6)6],

Update

s




Learned Policy Optimisation (LPO) Performance
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Visualizing Objective Functions: PPO

Derivative of PPO Objective ie—6
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Visualizing Objective Functions: PPO
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Visualizing Objective Functions:

Advantage
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Interpreting LPO
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Interpreting LPO
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Interpreting LPO
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Interpreting LPO
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Discovered Policy Optimisation (DPO)
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Discovered Policy Optimisation Performance
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Discovered Policy Optimisation: Far OOD Performance
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Discovery: DPO

1. Picked ¢ that
corresponds to a core
part of hand-crafted RL
objective functions.
Parameterised based
on theory

2. Meta-Optimized ¢
using evolution and
PureJaxRL

3. Analyzed ¢ to gain
insight into policy
optimization and create
Discovered Policy
Optimisation



Temporally-Adaptive LPO (ICLR 2024)

Derivative of LPO Objective
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We get much better performance!

Brax Performance

Median IQM Mean Optimality Gap
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MinAtar Performance
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Figure 2: TA-LPO leverages lifetime information and generalizes to a wide range of environ-
ments. Results of TA-LPO, LPO and PPO on the Brax and MinAtar suites across three seeds.
TA-LPO was only meta-trained on Spacelnvaders-MinAtar. We provide complete training curves in
Appendix B.
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1.

All of these experiments would have taken years to run in the old paradigm...

Further example work from FLAIR at the Hyperscale..

Reward Functions

a. Sapora, Silvia, et al. “EvIL: Evolution Strategies for Generalisable Imitation Learning.” ICML
2024

Expert Datasets

a. Lupu, Andrei, et al. “Behaviour Distillation.” ICLR 2024

High-Dimensional Opponent Shaping

a. Khan, Akbir, et al. "Scaling Opponent Shaping to High Dimensional Games." AAMAS 2023
Better Environments

a. Matthews, Michael et al. “Craftax” ICML 2024

b. Frey, Sasha et al, “JAX-LOB” ICAIF 2023
Synthetic Environments

a. Lu, Chris et al. “Adversarial Cheap Talk.” ICML 2023

b. Liesen, Jarek et al. “Discovering Minimal Reinforcement Learning Environments”
Learned RL Optimizers

a. Goldie, Alexander et al. “Can Learned Optimization Make Reinforcement Learning Less
Difficult?” ICML 2024 AutoRL Workshop (Spotlight)
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Conclusion

We are in the middle of a revolution for deep RL: end-to-end GPU acceleration
Speed-ups of many orders of magnitude are possible

We have implemented a number of environments in JAX

This unlocks theory-inspired, simpler, highly performant algorithms

It also pushes the frontier for meta-RL

All code and many tools are open source on our github

Thanks for listening!

Open questions:

e RL at the hyperscale in the Age of (Agentic) LLMs? Thanks for listening!
e Breaking out of the (JAX) Box?

s

T e
More info and code @j foerst and www.foersterlab.com ﬁLAIR
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