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Making Sense of Intelligence
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Making Sense of lntelligence Hydraulics?
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Making Sense of lhtelligence Hydraulics?

Fluid mechanics

Article Talk

From Wikipedia, the free encyclopedia

Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids
gases, and plasmas) and the forces on them.[']:3 |t has applications in a wide range of
disciplines, including mechanical, aerospace, civil, chemical and biomedical engineering,

geophysics, oceanography, meteorology, astrophysics, and biology. v
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Two ways to make sense of intelligence:
Rationality and computation

Rationales o
« What problem is a system solving? b
* Functional explanations VISION élI{)QQXC\{‘ER
* Problem statements and utility
functions of’HO JGHT

Computations
 How does a system find a solution? DAVID MARR JOHNR. ANDERSON

What does it use to find a solution?
) Mecl?anlstlc explanations _ Also see Tinbergen, 1963 for a
* Algorithms and search strategies similar perspective in ethology




Mechanistic explanations of vision
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Mechanism of vision: light hits retina, causing neural firing, etc.




Functional explanations of vision




Functional explanations of vision

image data, |

Kersten & Yuille, 2003

Function of vision: Identifying objects in environment




Functional accounts of
higher-level and social cognition

* Natural and artificial intelligence have very different mechanisms,
but they can share similar functions
* Different mechanisms: neurons versus silicon
* Same function: detecting objects

* Function(s) of perception are fairly clear-cut
* Even so, computational theory is very useful!

* Function(s) of higher-level and social cognition are less obvious

* Goals, intentionality, agency, learning, curiosity, adaptation, intelligence,
habits, communication, pedagogy, norms, cooperation, morality ...

 Computational theory is extremely useful, maybe unavoidable




Functional accounts of
higher-level and social cognition

Bayesian Models
of Cognition
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Human Problem Solving

15




Human Problem Solving

PURPOSIVE l

BEHAVIOR IN
ANIMALS and MEN

e & oJeddl

By
EDWARD C. TOLMAN

UNIVERSITY OF GALIFORNIA PRESS

Tolman (1932)

Miller, Galanter & Pribram (1960)

Newell & Simon (1972)
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Planning
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of Planning
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Newell & Simon, 1976; Puterman, 1994; Sutton & Barto, 1998; 2018



Planning

Expert Eye-Movements

Full Representation
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Tichomirov & Poznyanskaya (1966)
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Planning

Full Representation Expert Eye-Movements
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Planning

How do humans represent tasks?

Newell & Simon, 1972; Ohlsson, 2012)

—

People construct value-guided construals

Ho, Abel, Correa, Littman, Cohen & Griffiths (2022). Nature.
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Maze Navigation Task

Mazes constructed out of fixed walls (black)

and changing obstacles (blue)

|

Goal

Start

Ho, Abel, Correa, Littman, Cohen & Griffiths (2022). Nature.
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Maze Navigation Task

Trial Begins Goal, Agent and

Obstacles Appear Pa rt|'0|pant Awareness
1 Navigates Probe

How aware of the
highlighted obstacle
were you at any point?
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People plan and then act

N =161

Goal
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Mean Awareness Responses

N =161

Goal

XS

faliys

Start

1.0

0.5

-0.0
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Standard Model of Planning

(e.g., Heuristic Search)
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Value-Guided Construal
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Value-Guided Construal

Value of Construal

Vic)

Construct
a construal

Construal
Parse into Select subset
local interactions of interactions
il

\
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Value-Guided Construal

Value of Construal

Vic)

Construal

=
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Value-Guided Construal

Behavioral Utility

U(r.)

|

Plan Computed with Construal

Construal Computed Plan

Utility of
omputed Plan

29



Value-Guided Construal

Behavioral Utility

U(r.)

Construal

30



Value-Guided Construal

?

Complexity of construal
tility of
omputed Plan

Computed Plan
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Value-Guided Construal

Construal

Cognitive Cost

C'(c)
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Value-Guided Construal
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Do people form optimal construals?

Predicted Optimal Value-guided Construal (predicti Predicted
to be to be
. u u T | .
ignored NSNS é/ ignored
(- ™S L
. N
N 4
N |
[e] o o [ [k-/
. 0.5
Average awareness responses (experiment)
Ian 58 mRmm
|
—-0.0

o

o

o

*Pre-registered model predictions: https://osf.io/zpg69
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https://osf.io/zpq69

Do people form optimal construals?

Obstacles predicted to Obstacles predicted to be
be ignored included in construal
15 : 15
|
|
|
10 ! 10
c ! c
= -
Q ! Q
O ! o
5 | 5
|
i
|
|
0 T f T 0 -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Mean Awareness Mean Awareness

Obstacles split by 0.5 awareness: x4(1) = 23.03, p = 1.6 * 106, w = 0.52
35



Crossing a Bridg

36



Crossing a Bridge
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Critical Mazes and Obstacles
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Obstacle Recall Probe

Goal, Agent, and Obstacles Become
Obstacles Appear Invisible Recall Probe

‘ I 1 Confidence

An obstacle was either in the
yellow or green location (not How confident are you?
both), which one was it?

[T

[
H m

[]

- - . s |:ﬁ . ‘Iﬁ

Encourages
planning before Accuracy and
acting Confidence
Measures
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Critical Mazes and Obstacles
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Two concerns

1. Are patterns of construal a side-effect of other
perceptual or cognitive mechanisms?

2. Is value-guided construal computationally feasible?



Is construal a side-effect?

Value-Guided
Construal
Construal actively
shapes planning

Planning without
Construal
Construal is side-effect
of other processes
(e.g., low-level
perceptual cues)

Task
T

Decision-Maker
Task

Task
T

Construal
s
TC Cc
Memory Probes

( Decision-Maker\

Plan
T

Action
a

Tc
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a



Is construal a side-effect

of other processes?

Value-guided Construal




Is construal a side-effect
of other processes?

Real-Time Dynamic Programming
(RTDP) + Heuristic

Trajectory-based Heuristic Search

Barto, Bradtke & Singh, 1995
Bonet & Geffner, 2003
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Is construal a side-effect
of other processes?

Real-Time Dynamic Programming
(RTDP) + Heuristic

Trajectory-based Heuristic Search

Barto, Bradtke & Singh, 1995
Bonet & Geffner, 2003

Log “Hit Count”



Is construal a side-effect
of other processes?

LAO* + Heuristic
(A* for MDPs)

Graph-based Heuristic Search

Hart, Nilsson & Raphael, 1968
Hansen & Zilberstein, 2001

Hit Count



Is construal a side-effect
of other processes?

Trajectory-based Heuristic Search
Barto, Bradtke & Singh, 1995

Bonet & Geffner, 2003 Related to experience replay
Mattar & Daw, 2018; Pfeiffer & Foster, 2013;
Graph-based Heuristic Search Diba & Buzsaki, 2007

Hart, Nilsson & Raphael, 1968
Hansen & Zilberstein, 2001



Is construal a side-effect
of other processes?

Trajectory-based Heuristic Search

Graph-based Heuristic Search



Is construal a side-effect?

Process that adapts

Value-guided Construal 4— )
g Mmaze representatlon

Trajectory-based Heuristic Search
Graph-based Heuristic Search

Bottleneck Distance

Successor Representation Overlap
Perceptual and cognitive

processes over fixed maze
representation

Minimal Path Distance
Minimal Path Distance Step
Goal Distance

Start Distance

Wall Distance

Center Distance



Is construal a side-effect?

Value-guided Construal

Trajectory-based Heuristic Search

Graph-based Heuristic Search Step 1: Fit single
Bottleneck Distance g|0ba| model to
Successor Representation Overlap recall responses

Minimal Path Distance

Step 2: Remove
each one, refit

Minimal Path Distance Step
Goal Distance
Start Distance Step 3: Compare
Wall Distance

Center Distance



Addressing concerns 1 and 2:
Is construal a side-effect?

Value-guided Construal A

Trajectory-based Heuristic Search A
Graph-based Heuristic Search A

Bottleneck Distance -

Successor Representation Overlap -

Minimal Path Distance

Minimal Path Distance Step

Goal Distance

Start Distance

Wall Distance

Center Distance

0 20 40 60 80 100
Change in Fit (AIC) on Critical Mazes Accuracy
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Two concerns

1. Are patterns of construal a side-effect of other
perceptual or cognitive mechanisms?

Even when accounting for alternative factors, value-
guided construal explains responses

2. Is value-guided construal computationally feasible?

52



Is construal computationally feasible?

Value of Construal Behavioral Utility Cognitive Cost
Vic) =U(m.) — C(c)

Can construals be efficiently optimized in principle?

r Decision-Maker \

Task
Task Construal Plan Action
T \ ;TC e J a

/

Meta-optimization
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One approach: Construal search

+«— Empty construal

Full construal
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Breadth-First
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Lattice of possible con

One approach: Construal search
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Two concerns

1. Are patterns of construal a side-effect of other
perceptual or cognitive mechanisms?

Even when accounting for alternative factors, value-
guided construal explains responses

2. Is value-guided construal computationally feasible?

Optimal construal could be efficiently approximated using
search-based methods.

56



Functional Fixedness

e

Book of
matches

T (

Candle

Participants u

(e.g., construing the box as a container and not as a support)

Duncker, 1945

Goal: Mount the candle to the wall and light it

™) )

Lu et al., 2019

Box of tacks

sed the wrong task representation
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Functional Fixedness: A consequence of

construal

TEI’TT]M Q United
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Ho, Cohen & Griffiths (in press) Psychological Science.

Blocks
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Blocks and Notches

True maze

W

Ho, Cohen & Griffiths (in press) Psychological Science.
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Blocks and Notches

Blocks-only
True maze construal of maz
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Blocks and Notches

True maze construal of mazv

Blocks and notch
A,

W




Notch Necessary Maze

Goal
[ | [ |
[ | [ |
[ | [ |
| |
[ | [ |
.k Start
I

Blocks-and-Notches
Construal and Planning

5 Blocks/Notches

Notch Unnecessary Maze

Test Maze

Blocks-only
Construal and Planning

Blocks-and-Notches
Construal and Planning

Blocks-only
Construal and Planning

—— ———————

® 4 Blocks

——

5 Blocks/Notches
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Training Condition
I Notch Unnecessary B Notch Necessary

1.00 -
0.75 -
Proportion
Visiting
Critical Notch ~ 0-90 -
(Short Route)
0.25 A
0.00 -
N =377 1 2 3 4 5 6 7
Error bars are 95% Cl Test Trial Number

Training Condition: § =-1.90, SE = 0.17, z=-11.22, p < 2*10-16
Trial Number: g = 0.11, SE = 0.02,z=5.08, p = 3.7*107
Interaction: g = 0.09, SE=0.04, z= 2.15, p = 0.03
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Modeling Functional Fixedness

Latent construal strategy dynamics

Plan + Plan + Plan +
Execute Execute Execute
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Training Mazes (12)
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Modeling Functional Fixedness

Switching

Complexity and switching best explain
behavior (i.e. functional fixedness)

ﬂ Is costly n
4 ™

\_

Only Blocks
Blocks and
Notches

Model df AIC AAIC
No complexity or switch cost 1 132094 2804
Only complexity cost 2 130535 1245
Only switch cost 2 130057 767
Both complexity and switch cost 3 129289 0

¢ v

Complexity is costly
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Modeling Functional Fixedness

Switching

ﬂ Is costly n
4 ™

\_

Only Blocks
Blocks and
Notches

¢ v

Complexity is costly

Complexity costs predict reaction time

First Move
RT
(log ms)

8.4

8.2 1

8.0 1

7.8 1

7.6

7.4

7.2

ﬂf )
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%'_
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QO Training Trial

Test Trial
+ Visited Notch

V Test Trial
+ Did Not Visit Notch

7 8

9 10

Estimated Complexity Cost
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Making sense of social intelligence

Communicative Coordination and
Interactions Joint Planning

Ho et al. (2021) JEP:G;
Ho et al. (2018) Cog Sci;
Ho et al. (2016) NeurlPS

Ho et al. (2016) CogSci;
Carroll, et al. (2019) NeurlPS.
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Natural stupidity and artificial intelligence

My colleagues, they study artificial intelligence; me, | study natural stupidity.
- Amos Tversky

How can we develop Al systems that complement,
rather than enhance, our natural stupidity?
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Closing thoughts

* Making sense of intelligence

e Rational vs mechanistic accounts of natural and artificial
intelligence

* Task representations in human problem solving
* Value-guided construal
* Functional Fixedness

* Making sense of social intelligence
* Using cognitive science to inform interactive ML
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