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RL is NOw commonly deployed In the real-world

Video compression
[Mandhane et al.,2022]

Matrix multiplication
[Fawzi et al., 2022]

Hardware design
[Mirhoseini et al., 2021]

! Cooling systems
[Luo et al., 2022]

nature

Thermal power generators
[Zhan et al., 2022]

Managing inventories
[Madekaet al., 2022]
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Temporal abstraction — OPtiONS  sun, erecu. & sngn, au ros
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The many use cases of options

Faster credit assignment / planning: Transfer learning:

[Sutton, Precup, & Singh. Artif. Intelligence 1999]

EXp|OratiOﬂ [Jong, Hester, & Stone, AAMAS 2008]
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Figure by Jinnai et al. (2019)

Marlos C. Machado



12 Representation-driven Option Discovery in Reinforcement Learning

It works! RL in the real world

bttos://www.pature.com/articles/s41586-020-2939—
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Marlos C. Machado [Bellemare, Candido, Castro, Gong, Machado, Moitra, Ponda, & Wang, Nature 2020]
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Exploring at a higher level of abstraction

—f3 —E
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But where do options come from?
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Tem poral abSt raCtion — Options [Sutton, Precup, & Singh, AlJ 1999]

[Sutton et al., AAMAS 2011]

" K
v, 5(8) = Erp Zvj_lc(Sj) + 45 12(Sk) | So=s|, Vse$§

=1

Marlos C. Machado [Sutton, Machado, Holland, Szepesvari, Timbers, Tanner, & White, AlJ 2023]
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Tem poral abSt raCtion — Options [Sutton, Precup, & Singh, AlJ 1999]

[Sutton et al., AAMAS 2011]

" K
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Tem pOral abStraCtlor] — OpthﬂS [Sutton, Precup, & Singh, AlJ 1999]

[Sutton et al., AAMAS 2011]

random variable

U p(8) = Enpg Zqﬂ '¢(8 _|_7@—1 (Sk) | So=s|, VseS

L j=1 i

option (solution): policy and stopping function

Marlos C. Machado [Sutton, Machado, Holland, Szepesvari, Timbers, Tanner, & White, AlJ 2023]
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Tem pOral abStraCtlor] — OpthﬂS [Sutton, Precup, & Singh, AlJ 1999]

[Sutton et al., AAMAS 2011]

random variable

U p(8) = Enpg Zqﬂ '¢(8 _|_7@—1 (Sk) | So=s|, VseS

L j=1 i

option (solution): policy and stopping function

Marlos C. Machado [Sutton, Machado, Holland, Szepesvari, Timbers, Tanner, & White, AlJ 2023]
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Defining the option discovery problem

ﬁ WB Z,yj -1 K 1 (SK)

SO S] ; Vs €3

Specify subtask:

e (. signal to maximize
e z: stopping-value function

Marlos C. Machado
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Defining the option discovery problem

K
v25(5) = Enp| > ¥ e(S)) +v5 7 2(Sk)
j=1

S():S] ; Vs €3

Specify subtask:

e (. signal to maximize
e z: stopping-value function

Example:
Shortest-path option to a bottleneck state

(] Ct=-1

e z(s) =0 at subgoal states or z(s) = -o0 o.w.

Marlos C. Machado
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YWhere-sheuta-eptonrs-comerom?

What subtasks should we use”?
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Interact with
the environment

learn

empower ,
representation

the agent [ Representation-driven
Option Discovery cycle
(ROD cycle)

Options Representations

R NN

pose subtask

Marlos C. Machado and SO/VG It [Machado, Barreto, Precup, & Bowling, JMLR 2023]

[Machado, & Bowling, arXiv 2016]
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Marlos C. Machado [Erragabi, Machado, Zhao, Sukhbaatar, Lazaric, Denoyer, & Bengio, UAI 2022]
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[teration #1
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Marlos C. Machado [Jinnai, Park, Machado, & Konidaris, ICLR 2020]
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Interact with
the environment

learn

empower ,
representation

the agent [ Representation-driven
Option Discovery cycle
(ROD cycle)

Options Representations

R NN

pose subtask

Marlos C. Machado and SO/VG It [Machado, Barreto, Precup, & Bowling, JMLR 2023]

[Machado, & Bowling, arXiv 2016]
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Successor Representation [Dayan, Neural Computation 1993]

The SR as a collection of GVFs

e C.:indicator function for state visitation
e y: any fixed y, but the same across all GVFs
e T: any policy, but the same across all GVFs

e z(s) =0 for all states
Marlos C. Machado
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Eigenoptions

v, .e = )e (1)

Cy = e (x(S) —x(Si-1)) @

2(s)=0 Vse§ (3)

¢(, L) =0 Vr (4)

[Machado, Bellemare, & Bowling, ICML 2017]
Marlos C. Machado [Machado, Rosenbaum, Guo, Liu, Tesauro, & Campbell, ICLR 2018]
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Interact with
the environment

learn

empower ,
representation

the agent [ Representation-driven
Option Discovery cycle
(ROD cycle)

Options Representations

R NN

pose subtask

Marlos C. Machado and SO/VG It [Machado, Barreto, Precup, & Bowling, JMLR 2023]

[Machado, & Bowling, arXiv 2016]
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Random
policy

learn

empower ,
representation

the agent [ Representation-driven
Option Discovery cycle
(ROD cycle)

’ - Eigenvectors

Eigenoptions |
| of the SR
|
|

pose subtask

: [Machado, & Bowling, arXiv 2016]
Marlos C. Machado and SO/VG It [Machado, Barreto, Precup, & Bowling, JMLR 2023]
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An example
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ROD cycle
lteration T

Trajectory

Marlos C. Machado [Machado, Barreto, Precup, & Bowling, JMLR 2023]
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ROD cycle
lteration T

Trajectory

Eigenvector of the SR

Marlos C. Machado [Machado, Barreto, Precup, & Bowling, JMLR 2023]
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Trajectory

ROD cycle
lteration T

Eigenoption Eigenvector of the SR

Marlos C. Machado [Machado, Barreto, Precup, & Bowling, JMLR 2023]
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ROD cycle
lteration 1-2

Trajectory

Eigenoption Eigenvector of the SR

Marlos C. Machado [Machado, Barreto, Precup, & Bowling, JMLR 2023]
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ROD cycle
lteration 2

Trajectory

Eigenoption Eigenvector of the SR

Marlos C. Machado [Machado, Barreto, Precup, & Bowling, JMLR 2023]
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Trajectory

ROD cycle
lteration 3

Eigenoption Eigenvector of the SR

Marlos C. Machado [Machado, Barreto, Precup, & Bowling, JMLR 2023]
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Trajectory

ROD cycle
lteration 4

Eigenoption Eigenvector of the SR

Marlos C. Machado [Machado, Barreto, Precup, & Bowling, JMLR 2023]



Representation-driven Option Discovery in Reinforcement Learning

41

Covering eigenoptions vs random policy

6.7% 4.0%
0.8 0.9 0.9 13 14 1.7
091114161715 1.6
09 1.0 1.0 »
0.9 0.9 0.8 1011 1115 14
. ' 0.9 0.8 0.7 0.9 1.0 1.0 1.6 1.2
State visitation:
0.1 0.1 0.0 0.0 0.5 0.5 0.8 0.6 0.7 0.6 0.6 0.6 0.8 0.9 1.2 0.7
0.0 0.0 0.1 0.1 0.4 0.4 0.5 0.5 0.7 0.7 0.7 0.7 09 09 09 0.7
0.0 0001 0.1 0.2 0.3 0.4 04 04 0.7 0.7 0.7 0.8 0.8 1.0 0.9 0.8 0.7
0.0 0.0 0.0 0.1 0.3 03 03 0.3 0.7 0.7 0.6 0.6 0.8 0.7 0.7 0.7
0.0 0.0 0.0 0.1 0.3 03 03 03 0.6 0.6 0.6 0.5 0.7 0.7 0.7 0.7
L 0.0% —L 0.0%
Random policy over Random policy over primitive
primitive actions actions and covering eigenoptions

# steps needed to visit all states:~27,000 ~2,300

Marlos C. Machado [Machado, Barreto, Precup, & Bowling, JMLR 2023]
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Approximating the eigenfunctions of the
graph Laplacian with neural networks
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Approximate eigendecomposition

We can approximate the eigenvectors using a neural network and SGD

f.(s)
f,(s) > Approximate the top d

Observation —_
eigenvectors of the Laplacian.

Marlos C. Machado [Gomez, Bowling, & Machado, ICLR 024]



Proper Laplacian Representation Learning

GridRoom-1 GridRoom-16 GridMaze-19 GridRoom-1 GridRoom-16 GridMaze-19
G —o0.01 1.0 [ — 0.01
1.0 . =
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qé 0.8 —_— 0 05 g / = 0.05
> G508 ms5s
::{_E 06 o5 02
TE o **”~ - b o s
g e
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0.0 —_—10
2 4 10t 0 — 20 0 2 & s O 2 T o 7 19t —20
Gradient steps Grad ent steps Gradlent steps Gradient steps Gradient step: Gradient steps
GGDO [Wang et al., ICML 2021] ALLO

rrrrrrrrrr

Compared to previous approaches it is more robust,
accurate, and it works across different data streams

eeeeeeeeee

yyyyyyyyyyyy

[Gomez, Bowling, & Machado, ICLR 2024]
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Putting everything together
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Exploration

learn

empower ,
representation

the agent Representation-driven

Option Discovery cycle
(ROD cycle)

Temporal Representations

Abstraction

R NN

pose subtask

Marlos C. Machado and SO/VG It [Machado, Barreto, Precup, & Bowling, JMLR 2023]

[Machado, & Bowling, arXiv 2016]
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Approximations all the way down

Laplacian representation Eigenoptions Main Q-learner
GGDO [Wang et al., 2021] DDQN + n-step DDQN + n-step
[van Hasselt et al., 2016] [van Hasselt et al., 2016]

Marlos C. Machado [Klissarov & Machado, ICML 2023]



48

Representation-driven Option Discovery in Reinforcement Learning

Online deep covering eigenoptions

Return

Marlos C. Machado

Nine rooms

DCEO

Counts

ez-greedy

Time steps (x10°)

[Klissarov & Machado, ICML 2023]
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DCEO in non-stationary environments (continual learning)

Nine rooms - Goal+Topology Transfer
1.0 DCEO

RND

gz-greedy Counts
/
£ e

0 0.6
Time steps (x10°)

Marlos C. Machado [Klissarov & Machado, ICML 2023]
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and morel!

Obstructed Key

1.0
DCEO
H 0.8
g 0.6 Counts
D
X 5.4
& 0.2 gz-greedy
RND
0 2.5 5

Time steps (x10°)

Observation type:
Image

Marlos C. Machado [Klissarov & Machado, ICML 2023]
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Subgoals in Montezuma’s Revenge

Montezuma’s Revenge Eigenfunctions discovered by the Laplacian

Marlos C. Machado [Klissarov & Machado, ICML 023]



Beyond “navigation, 2d gridworld tasks’

Episodic Return
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Marlos C. Machado

o

Environment
layout

Goal location

[Klissarov & Machado, ICML 023]
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Are we done?
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Are we done?

. More demonstrations!

. More algorithms!

Marlos C. Machado
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Are we done?

. More demonstrations! Learning from scratch is slow, almost by definition

o There are many good reasons to do research when learning from scratch,
but that impacts the types of demonstrations we can provide

- We do have results leveraging domain knowledge (a.k.a. LLLMs) alongside temporal abstractions,
but | won’t talk about that today (see work by Klissarov et al., 2025)

« More algorithms! Conceptually speaking, there are still some pieces missing

- We are not using options for credit assignment

o Should we define state similarity in terms of rewards as well?
- What about partial observability?

- Can we combine options without additional learning”?

- What about MBRL and planning?

Marlos C. Machado
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Are we done?

. More demonstrations! Learning from scratch is slow, almost by definition

o There are many good reasons to do research when learning from scratch,
but that impacts the types of demonstrations we can provide

- We do have results leveraging domain knowledge (a.k.a. LLLMs) alongside temporal abstractions,
but | won’t talk about that today (see work by Klissarov et al., 2025)

« More algorithms! Conceptually speaking, there are still some pieces missing

<= We are not using options for credit assignment @ (Kotamreddy & Machado, In preparation)

< Should we define state similarity in terms of rewards as well? @ (Tse, Chandrasekar, & Machado, arXiv 2025)
<** What about partial observability? @ (Jose & Machado, In preparation)

<" Can we combine options without additional learning? @ (Chandrasekar & Machado, In preparation)

< What about MBRL and planning? see sutton et al., 2023)

Marlos C. Machado
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Marlos C. Machado
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Model-Free Value-Aware Covering Eigenoptions

. What if we used options not only for exploration but also for credit assignment?

. Pre-computed (tabular) options in the four-room environment:

Marlos C. Machado

Number of steps to goal state

Lower is
better |
No options
CEO
{ VA-CEO
0 10 20 30 a0 50

Number of episodes

Number of steps to goal state

10004 :Loweris

| better |
1

800 |
1
1
1
1

600 -

400 -

Imm Q-Learning
1
1
1

5
[Kotamreddy & Machado, In Preparation]
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Reward-Aware Proto-Representation
Reward-aware
Environments Successor representation Successor representation

FH oA

Negative reward @ ®

Marlos C. Machado [Tse, Chandrasekar, & Machado, arXiv 2025]
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Reward-Aware Eigenoptions
Reward-aware
Environments Successor representation Successor representation
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Marlos C. Machado [Tse, Chandrasekar, & Machado, arXiv 2025]
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Reward-Aware Eigenoptions

Marlos C. Machado

Return
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[Tse, Chandrasekar, & Machado, arXiv 2025]
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Wrapping up



Conclusion

I’'m still very excited about options. We now have option discovery methods that are
general, that work, and that:

. demonstrate a virtuous cycle, and

. are fully experiential, and

. are scalable, and

. are amenable to function approximation, and

. work for different data streams, and

. don’t make any assumptions about the topology of the environment, and
. is (sort of) biologically plausible, if you are into that kind of thing \_(*)_/
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Conclusion

Temporal abstractions should be a central piece of reinforcement learning

Where should options come from?

Specific representations learned by the agent

Given the right discovery method, options are scalable.

Options are particularly helpful for continual learning/in the face of non-stationarity.

This is what | believe is the future of our field 1

“State representations and temporal abstractions should be deeply intertwined, where
representations and options are constantly refined based on each other.”

Marlos C. Machado
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