Representation-driven Option Discovery in Reinforcement Learning

Marlos C. Machado

Sharif University of Technology, June 6, 2025

This is a research program that touches upon a lot of what you've seen in the other guest lectures

Marlos C. Machado

RL is now commonly deployed in the real-world

RL is now commonly deployed in the real-world

9

Video compression [Mandhane et al.,2022]

Matrix multiplication [Fawzi et al., 2022]

Hardware design [Mirhoseini et al., 2021]

Cooling systems [Luo et al., 2022]

Thermal power generators [Zhan et al., 2022]

Managing inventories [Madekaet al., 2022]

Temporal abstraction – Options [Sutton, Precup, & Singh, AlJ 1999]

The many use cases of options

Faster credit assignment / planning:

[Sutton, Precup, & Singh. Artif. Intelligence 1999]

Exploration [Jong, Hester, & Stone, AAMAS 2008]

Figure by Jinnai et al. (2019)

Transfer learning:

[Konidaris & Barto, IJCAI 2007]

and more...

It works! RL in the real world

https://www.nature.com/articles/s41586-020-2939-8

[Bellemare, Candido, Castro, Gong, Machado, Moitra, Ponda, & Wang, Nature 2020]

Exploring at a higher level of abstraction

Representation-driven Option Discovery in Reinforcement Learning

But where do options come from?

Temporal abstraction – Options [Sutton, Precup, & Singh, AIJ 1999] [Sutton et al., AAMAS 2011]

$$v_{\pi,\beta}^{c,z}(s) \doteq \mathbb{E}_{\pi,\beta} \left[\sum_{j=1}^{K} \gamma^{j-1} c(S_j) + \gamma^{K-1} z(S_K) \, \middle| \, S_0 = s \right], \quad \forall s \in \mathbb{S}$$

[Sutton, Machado, Holland, Szepesvari, Timbers, Tanner, & White, AIJ 2023]

subtask (problem): maximize discounted sum of cumulants plus a stopping value

$$v_{\pi,\beta}^{\overline{c,z}}(s) \doteq \mathbb{E}_{\pi,\beta} \left[\sum_{j=1}^{K} \gamma^{j-1} \underline{c(S_j)} + \gamma^{K-1} \underline{z(S_K)} \, \middle| \, S_0 \!=\! s \right], \quad \forall s \in \mathbb{S}$$

Marlos C. Machado

subtask (problem): maximize discounted sum of cumulants plus a stopping value $v_{\pi,\beta}^{\overline{c,z}}(s) \doteq \mathbb{E}_{\pi,\beta} \left[\sum_{j=1}^{K} \gamma^{j-1} \underline{c}(S_j) + \gamma^{\overline{K}-1} \underline{z}(S_K) \middle| S_0 = s \right], \quad \forall s \in S$ option (solution): policy and stopping function

Marlos C. Machado

18

Defining the option discovery problem

$$v_{\pi,\beta}^{c,z}(s) \doteq \mathbb{E}_{\pi,\beta} \left[\sum_{j=1}^{K} \gamma^{j-1} c(S_j) + \gamma^{K-1} z(S_K) \, \middle| \, S_0 = s \right], \quad \forall s \in \mathcal{S}$$

Specify subtask:

- *c:* signal to maximize
- z: stopping-value function

Defining the option discovery problem

$$v_{\pi,\beta}^{c,z}(s) \doteq \mathbb{E}_{\pi,\beta} \left[\sum_{j=1}^{K} \gamma^{j-1} c(S_j) + \gamma^{K-1} z(S_K) \, \middle| \, S_0 = s \right], \quad \forall s \in \mathbb{S}$$

Specify subtask:

- *c:* signal to maximize
- *z:* stopping-value function

Example: Shortest-path option to a bottleneck state

- C_t = -1
- z(s) = 0 at subgoal states or z(s) = -∞ o.w.

Where should options come from? What subtasks should we use?

Marlos C. Machado

Intuition

Intuition

Intuition

[Jinnai, Park, Machado, & Konidaris, ICLR 2020]

Marlos C. Machado

Marlos C. Machado

Successor Representation [Dayan, Neural Computation 1993]

$$oldsymbol{\Psi}_{\pi}(s,s') = \mathbb{E}_{\pi}\left[\left| \sum_t \gamma^t \mathbf{1}_{S_t \,=\, s'} \left| S_0 = s
ight|
ight.$$
 (1)

$$\mathbf{\Psi}_{\pi} = \sum_{t} (\gamma \mathbf{P}_{\pi})^t = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1}$$
 (2)

The SR as a collection of GVFs

- C_t: indicator function for state visitation
- γ: any fixed γ, but the same across all GVFs
- π: any policy, but the same across all GVFs
- z(s) = 0 for all states

Eigenoptions

$$\Psi_{\pi} \mathbf{e} = \lambda \mathbf{e} \tag{1}$$

$$C_t \doteq \mathbf{e}_i^\top \big(\mathbf{x}(S_t) - \mathbf{x}(S_{t-1}) \big) \quad (2)$$

 $z(s) = 0 \quad \forall s \in \mathcal{S} \tag{3}$

$$q_{\pi}(\cdot, \bot) = 0 \quad \forall \pi \tag{4}$$

[Machado, Bellemare, & Bowling, ICML 2017] [Machado, Rosenbaum, Guo, Liu, Tesauro, & Campbell, ICLR 2018]

Representation-driven Option Discovery in Reinforcement Learning

An example

ROD cycle Iteration 1

ROD cycle Iteration 1

Covering eigenoptions vs random policy

Random policy over primitive actions

Random policy over primitive actions and covering eigenoptions

steps needed to visit all states:~27,000

~2.300

1.4

0.9 0.9 0.9 0.7

0.7 0.7 0.7 0.7

4.0%

0.0%

Representation-driven Option Discovery in Reinforcement Learning

Approximating the eigenfunctions of the graph Laplacian with neural networks

Approximate eigendecomposition

We can approximate the eigenvectors using a neural network and SGD

minimizing the augmented Lagrangian Laplacian objective (ALLO):

$$\max_{\boldsymbol{\beta}} \min_{\mathbf{u} \in \mathbb{R}^{d|\mathcal{S}|}} \sum_{i=1}^{d} \langle \mathbf{u}_i, \mathbf{L}\mathbf{u}_i \rangle + \sum_{j=1}^{d} \sum_{k=1}^{j} \beta_{jk} \left(\langle \mathbf{u}_j, \llbracket \mathbf{u}_k \rrbracket \rangle - \delta_{jk} \right) + b \sum_{j=1}^{d} \sum_{k=1}^{j} \left(\langle \mathbf{u}_j, \llbracket \mathbf{u}_k \rrbracket \rangle - \delta_{jk} \right)^2$$

[Gomez, Bowling, & Machado, ICLR 2024]

Proper Laplacian Representation Learning

GGDO [Wang et al., ICML 2021]

Compared to previous approaches it is more robust, accurate, and it works across different data streams

44

[Gomez, Bowling, & Machado, ICLR 2024]

Representation-driven Option Discovery in Reinforcement Learning

Putting everything together

Approximations all the way down

Laplacian representation GGDO [Wang et al., 2021]

Eigenoptions DDQN + n-step [van Hasselt et al., 2016]

Main Q-learner DDQN + n-step [van Hasselt et al., 2016]

Online deep covering eigenoptions

Marlos C. Machado

DCEO in non-stationary environments (continual learning)

and more!

[Klissarov & Machado, ICML 2023]

Subgoals in Montezuma's Revenge

Montezuma's Revenge

Eigenfunctions discovered by the Laplacian

1- ----

Beyond "navigation, 2d gridworld tasks"

[Klissarov & Machado, ICML 2023]

Marlos C. Machado

Representation-driven Option Discovery in Reinforcement Learning

Are we done?

• More demonstrations!

• More algorithms!

- More demonstrations! Learning from scratch is slow, almost by definition
 - There are many good reasons to do research when learning from scratch, but that impacts the types of demonstrations we can provide
 - We do have results leveraging domain knowledge (a.k.a. LLMs) alongside temporal abstractions, but I won't talk about that today (see work by Klissarov et al., 2025)
- More algorithms! Conceptually speaking, there are still some pieces missing
 - We are not using options for credit assignment
 - Should we define state similarity in terms of rewards as well?
 - What about partial observability?
 - Can we combine options without additional learning?
 - What about MBRL and planning?

- More demonstrations! Learning from scratch is slow, almost by definition •
 - There are many good reasons to do research when learning from scratch, 0 but that impacts the types of demonstrations we can provide
 - We do have results leveraging domain knowledge (a.k.a. LLMs) alongside temporal abstractions, 0 but I won't talk about that today (see work by Klissarov et al., 2025)
- More algorithms! Conceptually speaking, there are still some pieces missing •

We are not using options for credit assignment () (Kotamreddy & Machado, In preparation)

- Should we define state similarity in terms of rewards as well? (156, Chandrasekar, & Machado, arXiv 2025) ••,
- What about partial observability? (G) (Jose & Machado, In preparation)
 - Can we combine options without additional learning?
- . What about MBRL and planning? (see Sutton et al., 2023)

- More demonstrations! Learning from scratch is slow, almost by definition •
 - There are many good reasons to do research when learning from scratch, 0 but that impacts the types of demonstrations we can provide
 - We do have results leveraging domain knowledge (a.k.a. LLMs) alongside temporal abstractions, 0 but I won't talk about that today (see work by Klissarov et al., 2025)
- More algorithms! Conceptually speaking, there are still some pieces missing •

We are not using options for credit assignment (Skotamreddy & Machado, In preparation)

Should we define state similarity in terms of rewards as well?

What about partial observability? (G) (Jose & Machado, In preparation)

. What about MBRL and planning? (see Sutton et al., 2023)

57

Model-Free Value-Aware Covering Eigenoptions

- What if we used options not only for exploration but also for credit assignment?
- Pre-computed (tabular) options in the four-room environment:

Reward-Aware Proto-Representation

Environments

Successor representation

Reward-aware

Successor representation

Reward-Aware Eigenoptions

Environments

Reward-aware

Successor representation

Reward-Aware Eigenoptions

Representation-driven Option Discovery in Reinforcement Learning

Wrapping up

I'm still very excited about options. We now have option discovery methods that are general, that work, and that:

- demonstrate a virtuous cycle, and
- are fully experiential, and
- are scalable, and
- are amenable to function approximation, and
- work for different data streams, and
- don't make any assumptions about the topology of the environment, **and**
- is (sort of) biologically plausible, if you are into that kind of thing $_(\underline{\nu})_{\}$

Conclusion

- Temporal abstractions should be a central piece of reinforcement learning
- Where should options come from?
 - Specific representations learned by the agent
- Given the right discovery method, options are scalable.
- Options are particularly helpful for continual learning/in the face of non-stationarity.
 - $_{\circ}$ $\,$ This is what I believe is the future of our field \uparrow

"State representations and temporal abstractions should be deeply intertwined, where representations and options are constantly refined based on each other."

Representation-driven Option Discovery in Reinforcement Learning

