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My Goal Today

 Motivate why we need better actor-critics
* Discuss how we can see actor-critic methods as approximate policy iteration
* Highlight three key choices underlying many existing actor-critic methods
* and a little bit about what the theory says about them
* Describe our algorithm, called Greedy Actor-Critic

* focused on improving one of these three choices



Online Reinforcement Learning Setting

* Imagine an agent that is continually optimizing operation of a drinking water
treatment plant
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Need online, single-stream algorithms that can run for a long time



Bold claim: Our deep RL algorithms to learn policies are bad



Bold claim: Our deep RL algorithms to learn policies are bad
They are notoriously finicky with lots of hyperparameters

We layer on more tricks, because they aren’t working well



Case Study: Recreating a Result for Soft-Actor Critic (SAC)

o Soft-Actor Critic is a commonly-used algorithm

* For our paper on how to do better experiments in RL, we included a case
study recreating SAC’s results on an environment called Half-Cheetah

* See our paper: “Empirical Design in Reinforcement Learning”, Patterson et al., 2024



Significant difference from one implementation detail

* Black line is SAC
implemented using only 16000
detalls in the paper

C
» DDPG (Deep Deterministic = SAC (EP)
Policy Gradient) is a baseline % 8000 e
in their work S ' — -
Q
_ ] ] S SAC (No EP) o
* A key detail found in their < DDPG (SAC Env)
code was to add an of

exploration phase, SAC (EP) 0 3

Timesteps (Millions)

* See our paper: “Empirical Design in Reinforcement Learning”, Patterson et al., 2024



Adding implementation-level improvements to DDPG

« DDPG becomes competitive
when
(a) reconsidering the noise
process for exploration
adding exploration phase

15000

7500

* |nset plot is from their work

Average Return

SAC (No EP)
0 DDPG (No EP)

Timesteps (Millions)

* See our paper: “Empirical Design in Reinforcement Learning”, Patterson et al., 2024



But now we have a working understanding of SAC,
and can use It elsewhere



 Many in RL would say these environments are too simple

*entropy, critic
& actor stepsize
tuned across
environments
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SAC is failing on classic control environments

Pendulum

Continuous

Discrete

—— GreedyAC
—— SAC
—— VanillaAC

Timesteps 1
(Hundreds of Thousands)



Our current goal is to remove (subtract not add)

And get a more minimal AC algorithm, inspired by theory



To really understand Actor-Critic and the theory behind it

let’s talk about Actor-Critic as Approximate Policy lteration



Refresher on Policy Iteration

* Policy iteration is built on a foundational result:
the policy improvement theorem



The Policy Improvement Theorem

 For the current policy 7 and action-values ¢,
- if we get the new policy 7' by making it greedy in g,

. €.9., 7'(s) = argmax q,(s,a)
acef

 then 7’ is guaranteed to be at least as good as 7



Policy lteration

 For the current policy 7 and action-values ¢,

» Get new policy 7' by making it greedy in g, then obtain ¢ and repeat




Entropy-Regularized Greedification

» Can also get new policy z’ by making it soft-greedy in g,

o Zent(+ |$) = argmaxk, [q(s,a)]+7# (p) = Boltzmann(g(s, - )/7)  exp(q(s, - )/7)

*caveat: must use soft action-values



In reality, we do Approximate Policy lteration



Approximate Policy Evaluation

7 X
g,

y

q, 7t

eed\](]



Approximate Greedification and Evaluation

Critic




The class of Actor-Critic algorithms can be seen as doing AP|



A Representative Actor-Critic Algorithm

» The agent interacts with the environment, taking actions a ~ my( - | 5)

» |t stores all that data in a replay buffer, to do mini-batch updates each step

° BUﬁer — {(So, Clo, 1”1, Sl)’ (Sl, al’ 7‘2, S2)9 (S29 Clz, 1”3, S3)9 SN (St—la at_la rta St)}



An Actor-Critic Update with Replay

e Sample (s, a,r,s’) from the replay buffer (or sample a mini-batch)
» Update critic ¢,, using Sarsa for prediction on (s, a,r, s’)

- Update moves ¢g,, closer to qr, (approximate policy evaluation)



An Actor-Critic Update with Replay

e Sample (s, a,r,s’) from the replay buffer (or sample a mini-batch)
» Update critic g,, on (s, a, 1, s’)

» Update actor 7, using the log-likelihood update
a ~ (- | 5)
0 — 0+nq,(s,a)Vinzyals)

Update increases I (-] S)[q(s, a)], likelihood of actions with high value under
q,, (greedifies)



Entropy-regularized Actor-Critic Update

e Sample (s, a,r,s’) from the replay buffer (or sample a mini-batch)
» Update critic g,, on (s, a, 1, s’)

» Update actor 7, using the log-likelihood update

a~ 779( - | $)
0 — 0+nqg,(s,a)Vinryal|s)+nV 7 (zy -|5))

Update increases I (-] S)[q(s, a)], likelihood of actions with high value under
q,, While ensuring entropy stays higher (greedifies)



An Actor-Critic Update with Replay

« Sample (s, a,r,s’) from the replay buffer (or sample a mini-batch)
» Update critic g, using Sarsa on (s, a,r, s’)

» Update actor 7, using the log-likelihood update
a~ 1y - |5)
0 — 0+ nq,(s,a)Vinmyal|s)

Update increases I, | ol4q(s, a)], likelihood of actions with high value under
q,, (greedifies)



Three Key Choices for Many Actor-Critic Algorithms

For a given state s
1. How should we update the critic g? (do approximate policy evaluation)

2. How should we update the actor 77 (do approximate greedification)



Three Key Choices for Many Actor-Critic Algorithms

For a given state s
1. How should we update the critic g? (do approximate policy evaluation)

2. How should we update the actor 77 (do approximate greedification)

3. How much importance (weight) do we put on each state?



Three Key Choices for Many Actor-Critic Algorithms

For a given state s
1. How should we update the critic g7 (do approximate policy evaluation)

2. How should we update the actor 7? (do approximate greedification)
3. How much importance (weight) do we put on each state?*
e certain choices can cause very suboptimal behavior

* we solved an open problem (proved an off-policy policy gradient theorem)
and used this theoretical result to get a sound algorithm

* See our recent journal paper: “Actor Critic with Emphatic Weightings” Graves et al., JMLR, 2023



Outcome of the theorem

. Objectiveis  J(O) = E,_, 4r (16|95, D]

* where /i is the state distribution (e.g., distribution over states in data)

 Underlying update used by many actor-critic methods

VJ(6) = (s,a) Vinmya|s)|

= ~ A~ Tg(- | 5) [qﬂe

o Correct gradient requires a reweighting, with 7 the emphatic weight

VIO) = E, o iio|r (5. @) Vinmyal s)]

* See our journal paper: “Actor Critic with Emphatic Weightings” Graves et al., JMLR, 2023



Suboptimal policy under standard off-policy AC
@ _____ Gradient |

0,0,0 CLl,O ii
_______ 1.0
P NG Ju0.9-
(\@ 52 ,) “08
ag, 2 CL~1,T) N EOTO ai, 1 8;
0.5
0 500 1000 1500 2000
Episodes
. (standard off-policy AC) updates with s ~ stationary

distribution under behavior policy

* Gradient reweights updates with emphatic weightings

* See our journal paper: “Actor Critic with Emphatic Weightings” Graves et al., JMLR, 2023



Three Key Choices for Many Actor-Critic Algorithms

For a given state s
1. How should we update the critic g7 (do approximate policy evaluation)

2. How should we update the actor 7? (do approximate greedification)
3. How much importance (weight) do we put on each state?*
e certain choices can cause very suboptimal behavior

* pbut state weighting only impacts how we trade-off accuracy under limited
function approximation (e.g., no suboptimality in tabular setting)

* See our journal paper: “Actor Critic with Emphatic Weightings” Graves et al., JMLR, 2023



Three Key Choices for Many Actor-Critic Algorithms

For a given state s
1. How should we update the critic g? (do approximate policy evaluation)

» Recent theory accounts for some error in g, with exact greedification”
when using a KL to the previous policy, I.e., mirror descent update

* See nice papers on MD-MPI (Vielllard et al, 2020), Politex (Abbasi-Yadkori et al., 2019)



Three Key Choices for Many Actor-Critic Algorithms

For a given state s
1. How should we update the critic g7 (do approximate policy evaluation)

2. How should we update the actor 7? (do approximate greedification)
» lots of theory for unbiased/exact policy evaluation (policy gradient)

 but what about approximate policy evaluation and greedification



Why can’t we always do exact greedification?
Reason 1

* For discrete actions, can always exactly use the (soft) greedy policy

exp(q(s,a)/r)
>, exp(q(s, b)/7)

_ e.g., exactly set m(a|s) = mgni(als) =



Why can’t we always do exact greedification?
Reason 1

* For discrete actions, can always exactly use the (soft) greedy policy

exp(q(s,a)/r)
>, exp(q(s, b)/7)

» But! For continuous actions, sampling Boltzmann(g(s, - )) is expensive

_ e.g., exactly set m(a|s) = mgni(als) =



Why can’t we always do exact greedification?
Reason 2

» Even for discrete actions, it is common to add a KL divergence (with weight A)
to the previous policy x,_;

» want &, = | where m(als) x z,_(al|s) exp(q(s,a)/i)



Why can’t we always do exact greedification?
Reason 2

« Common to add a KL divergence (with weight A) to the previous policy r,_;

» want r, = | where m(als) x z,_(al|s) exp(qg(s,a)/i)

[
Unrolling, we get myj(a | s) o exp % Z q,(s,a)
j=0

« (Getting this policy requires averaging all previous critics q; (1)

e even for discrete actions



Approximate greedification for Boltzmann

» Move parameterized policy 7, closer to this desired policy

 reduce KL divergence between m, and mgnt

o+ 00— O0—aVKL(my( - |9) || 7ment( - |5))

Note: this gradient actually gives us the same log likelihood update
with entropy regularization

— 2V KL+ |5) | | Zent( - |9)) = Epr (. 19f(5: @) VIn mga | )] + 7V F (7 - | 5))

Many actor-critic methods use an update like this one




Approximate greedification for KL-policy

» Move parameterized policy 7, closer to this desired policy

 or reduce KL divergence between 1, and 7z

o 0 —0—aVKL(my(:|s)||mq(-|s))

An aside: there are two completely different uses for a KL here

Role 1: KL penalty to the previous policy to define the target policy 7y
Role 2: KL loss for the actor update

—AVgRL(7y( - |9) [ m (- 19)) = BEpenypla(s, @) Vinzya| s)] + AVKL(zy( - | $) [ |71 | 5))




Three Key Choices for Many Actor-Critic Algorithms

For a given state s
1. How should we update the critic g7 (do approximate policy evaluation)

2. How should we update the actor 7? (do approximate greedification)

» improvement guarantee iff KL reduction greater than difference in average
critic error under the new and old policy”

* main point: complicated interaction between critic error and
approximation in greedification step

* See Corollary 9 in our journal paper: “Greedification Operators for Policy Optimization:
Investigating Forward and Reverse KL Divergences”, Chan et al., JMLR, 2022



Brief summary so far

» Actor-critic algorithms do approximate policy iteration

 Most theory about solution quality either for

« approximate policy evaluation, exact greedification to x| (MD-MPI, Politex,
Munchausen RL, Implicit Q-values)

* unbiased/exact policy evaluation, approximate greedification (REINFORCE,
CPIl, NPG, TRPO, SAC theory, MPO theory, AC with emphatic weightings, FMA-PG)

 When both steps are approximate, need to be more careful about interactions
between errors

 and maybe work extra hard to do each step well



There is so much to do, what shall we tackle?



One direction is to reconsider this reverse KL underlying many AC algorithms



Forward vs Reverse KL and convexity

» Forward KL: KL(7gnt( - |$) || 7( - | 5))

e convex for Boltzmann policies

» Reverse KL: KL(7y( - [ ) || ment( - |5))

e non-convex even for nice distributions

* See our journal paper: “Greedification Operators for Policy Optimization: Investigating
Forward and Reverse KL Divergences”, Chan et al., JMLR, 2022



Forward vs Reverse KL and convexity

__0.008-

N

©®
= 0.022

» Forward KL: KL(7gnt( - |$) || 7( - | 5))

£

e convex for Boltzmann policies

Forward KL
0
o

» Reverse KL: KL(7y( - [ ) || ment( - |5))

e non-convex even for nice distributions 0.008

Reverse KL
std : In(1 + exp(6))

0.900, ne— E
20 -1.0 00 1.0 20
mean : p

* See our journal paper: “Greedification Operators for Policy Optimization: Investigating
Forward and Reverse KL Divergences”, Chan et al., JMLR, 2022



Motivates reconsidering local updates that can get stuck

And exploring alternatives



Next

* Explain our GreedyAC algorithm, inspired by this motivation



Next

* Explain our GreedyAC algorithm, inspired by this motivation

 Work lead by PhD student Samuel Neumann

* See our paper: “Greedy Actor-Critic: A New Conditional Cross-Entropy Method for Policy
Improvement”, Neumann et al., ICLR, 2023



A Brief Interlude about CEM

Goal: find arg max f(6)
0



A Brief Interlude about CEM

Goal: find arg max g(a)
a



A Brief Interlude about CEM

Goal:
find arg max g(a) g

A



A Brief Interlude about CEM

Goal:
find arg max g(a) g

A

Introduce distribution
T that concentrates
on maximal a T



CEM in Action

Goal:
find arg max g(a) g

A

Sample a from «
T~

d



CEM in Action

Goal:
find arg max g(a) g

A

Take top percentile
according to g(a)
-



CEM in Action

Goal:
find arg max g(a) g

A

Increase likelihood of
a In top percentile
-



We want 7(a | s) to concentrate on top actions of g(s, a)
Like CEM, but now conditioned on states



Conditional CEM Algorithm

 Assume action-values ¢g are fixed and given, for now

» Learn actor policy 7(a | s) that gradually increase likelihood of top actions,
across states



Conditional CEM Algorithm

 Assume action-values ¢g are fixed and given, for now

» Learn actor policy 7(a | s) that gradually increase likelihood of top actions,
across states

» Issue: w(a|s) will likely concentrate too quickly, before seeing all states

e |.e., we can’t just apply the exact same idea as CEM naively

» Fix: introduce a more slowly changing proposal policy 7(a | s)



Conditional CEM in Action

= Proposal Policy Sample a state s (or mini-batch of states)
/ Sample 15 actions a, a,, ..., a;s ~ 7( - | $)
e * Note: we do not actually use a uniform distribution for the policies,
1 it is just easier to visualize here in this example
Q(Sa )

7 Actor Policy Identify I** = top 5 (namely the 0.33 percentile)

Actions



Conditional CEM in Action

Vi) = V2 In(m(als))

Q(s, ) /\ THVH(T(|s))
7w Proposal Policy

Actions Actions



Conditional CEM in Action

Vi) = V2 In(m(als))

Q(s, ) /\ THVH(T(|s))
7w Proposal Policy

|

Actions Actions



Conditional CEM in Action

Vi) = V) _ In(m(als))

Q(s, ) AV EC) N\
m Proposal Policy
—_r T —————
I I
Q(s, ) Var(s) =V 2_In(m(als))

Actions Actions Actions



Conditional CEM in Action

Vi) = V) _ In(m(als))

Q(s,") AV EC) N\
m Proposal Policy
—_—t e L] S T
I I I~
Q(s;) Var(s) =V 2_In(m(als))

Actions Actions Actions



Theory for why we have two policies

* [wo timescale analysis:

e ¢ and & changing at a slower timescale, so we can consider them fixed
when analyzing the update for the actor

* Result says updates behaves like CEM, in expectation across states

» Tracks the CEM update, as g (slowly) changes



Policy Improvement Guarantees

e Log-likelihood update to & corresponds to minimizing a forward KL to a
percentile policy

. KL (”percentile( | s) [ 7( ‘S))

« Percentile policy on g, guaranteed to be a better policy

. namely k£, 1qg,(s,a)] 2 E,.;lq,(s,a)] for 7" = myercentile



Policy Improvement Guarantees

e Log-likelihood update to & corresponds to minimizing a forward KL to a
percentile policy

. KL (”percentile( | s) [ 7( ‘S))

 Percentile policy on g, guaranteed to be a better policy

 namely £, 1q,(s,a)] 2k, ,lq,(s,a)] forn" = “percentile

 We named the algorithm GreedyAC because it eventually concentrates on
the greedy actions (unregularized), unlike Soft Actor-Critic



Contrasting to SAC and other AC methods

e Most AC methods minimize a reverse KL to gt OF 7

o KL (7(-|9)]|7ment( - 5)) or KL (z(- [ $) ]| m( - |5))



Similarity to MPO

« MPO minimizes a forward KL to x|, by increasing likelihood of actions
sampled from 7y

o KL (mqC- 1) ][ 2( - |5))



Back to our simple classic control environments

» All agents use neural networks, the Adam optimizer, and replay
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*more results in the paper, on MinAtari and Swimmer from Mujoco



Why might GreedyAC be better than SAC?

 SAC is sensitive to its entropy parameter
* Entropy potentially plays many roles in SAC

e prevents policy collapse, promotes exploration, smoothing the objective



Why might GreedyAC be better than SAC?

 SAC is sensitive to its entropy parameter
* Entropy potentially plays many roles in SAC

e prevents policy collapse, promotes exploration, smoothing the objective

* GreedyAC only uses the entropy to slow the concentration of the proposal
policy (one role)



Understanding sensitivity to entropy

* Solid area is range

of performance
across different
entropy values

 Wider is bad

e Lower is bad

Average Return

Average Return

~
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Conclusions

* Finicky behavior of actor-critic methods might be due to interacting choices

e did not reweight states, did not get critic error low enough, did not do
enough greedification, or did not avoid changing the policy too much...



Conclusions

* Finicky behavior of actor-critic methods might be due to interacting choices

e did not reweight states, did not get critic error low enough, did not do
enough greedification, or did not avoid changing the policy too much...

 |nitial results for GreedyAC look promising as a simpler actor update
* Intuitive percentile parameter, does not rely on entropy

* one part of this puzzle, we are continuing to work on interacting choices



Conclusions

* Finicky behavior of actor-critic methods might be due to interacting choices

e did not reweight states, did not get critic error low enough, did not do
enough greedification, or did not avoid changing the policy too much®...

 |nitial results for GreedyAC look promising as a simpler actor update
* Intuitive percentile parameter, does not rely on entropy

* one part of this puzzle, we are continuing to work on interacting choices”

*RLC 2025 paper “Investigating the Utility of Mirror Descent in Off-policy
Actor-Critic”



Conclusions

* Finicky behavior of actor-critic methods might be due to interacting choices

* did not reweight states, did not get critic error low enough, did not do enough
greedification, or did not avoid changing the policy too much...

 |nitial results for GreedyAC look promising as a simpler actor update

* Intuitive percentile parameter, does not rely on entropy

* one minor part of this puzzle, we are working on interacting choices
* This Is an exciting time to be making better actor-critics

* |ots of theoretical insights, more can make its way into practice

* |ots to understand empirically about the sea of algorithms
Questions?



