
Martha White
Associate Professor
University of Alberta
Canada CIFAR AI Chair and Fellow of Amii
Canada Research Chair in Reinforcement Learning

Better Actor-Critic Algorithms for
Reinforcement Learning

My Goal Today

• Motivate why we need better actor-critics

• Discuss how we can see actor-critic methods as approximate policy iteration

• Highlight three key choices underlying many existing actor-critic methods

• and a little bit about what the theory says about them

• Describe our algorithm, called Greedy Actor-Critic

• focused on improving one of these three choices

Online Reinforcement Learning Setting
• Imagine an agent that is continually optimizing operation of a drinking water

treatment plant

Hyper evaluation

+
⇤1

<latexit sha1_base64="deW2EVLxv/hd39iSw05YDyvSrxo=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xANvUK64VXcOtEq8nFQgR3NQ/uqHMUkFlYZwrHXPcxPjZ1gZRjidlvqppgkmYzykPUslFlT72XzhKTqzSoiiWNknDZqrvycyLLSeiMAmBTYjvezNxP+8XmqiKz9jMkkNlWTxUZRyZGI0ux6FTFFi+MQSTBSzuyIywgoTYzsq2RK85ZNXSfui6tWq9ftapXGd11GEEziFc/DgEhpwC01oAQEBz/AKb45yXpx352MRLTj5zDH8gfP5AzgHkAk=</latexit>

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

Data logs

Plant

Calibration
model

Deployment

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

⇤k

<latexit sha1_base64="5vXGSKBJonmcar4CKCU8+sMoymA=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPxoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevkvZF1atV6/e1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzB4/vkEM=</latexit>

Hyper evaluation

+
⇤1

<latexit sha1_base64="deW2EVLxv/hd39iSw05YDyvSrxo=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xANvUK64VXcOtEq8nFQgR3NQ/uqHMUkFlYZwrHXPcxPjZ1gZRjidlvqppgkmYzykPUslFlT72XzhKTqzSoiiWNknDZqrvycyLLSeiMAmBTYjvezNxP+8XmqiKz9jMkkNlWTxUZRyZGI0ux6FTFFi+MQSTBSzuyIywgoTYzsq2RK85ZNXSfui6tWq9ftapXGd11GEEziFc/DgEhpwC01oAQEBz/AKb45yXpx352MRLTj5zDH8gfP5AzgHkAk=</latexit>

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

Data logs

Plant

Calibration
model

Deployment

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

⇤k

<latexit sha1_base64="5vXGSKBJonmcar4CKCU8+sMoymA=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPxoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevkvZF1atV6/e1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzB4/vkEM=</latexit>

Mixing
speed

Backwash
duration

Backwash
aeration

Chemical
dosing

Backwash
cycle

Backwash
onset

*image from partner ISL Engineering

Need online, single-stream algorithms that can run for a long time

Bold claim: Our deep RL algorithms to learn policies are bad

Bold claim: Our deep RL algorithms to learn policies are bad

They are notoriously finicky with lots of hyperparameters

We layer on more tricks, because they aren’t working well

Case Study: Recreating a Result for Soft-Actor Critic (SAC)

• Soft-Actor Critic is a commonly-used algorithm

• For our paper on how to do better experiments in RL, we included a case
study recreating SAC’s results on an environment called Half-Cheetah

* See our paper: “Empirical Design in Reinforcement Learning”, Patterson et al., 2024

Significant difference from one implementation detail

• Black line is SAC
implemented using only
details in the paper

• DDPG (Deep Deterministic
Policy Gradient) is a baseline
in their work

• A key detail found in their
code was to add an
exploration phase, SAC (EP)

Better RL

0 3
Timesteps (Millions)

0

8000

16000

Av
er

ag
e

Re
tu

rn

SAC (EP)

SAC (No EP)
DDPG (SAC Env)

Figure 14: Our second attempt to recreate the experiments in the original SAC paper. We
again use 30 runs. The mean performance attained by SAC (EP) closely matches that
reported in the original work, but the variance in performance is again higher. This is likely
due to the fact that we used more seeds than the original work to evaluate the performance
of SAC.

In Figure 13, the mean performance of SAC over 30 runs is lower than that reported
in the original paper, and the error bars here are larger than those reported in the original
paper. Next, we examined the code-base more carefully, to understand this discrepancy.

In our previously described experiment, we attempted to reproduce the results of Haarnoja
et al. (2018) using the experimental procedures described in the paper alone. Yet, several
implementation choices in the code-base were not reported in the paper. First, the default
implementation of some policies in SAC-CB use regularization (e.g, Gaussian policies).
Second, many code examples in SAC-CB normalize actions to stay within the environmental
action bounds. Finally, several code examples in SAC-CB use an initial random exploration
phase — actions are sampled from a uniform distribution over actions for the first 10,000
steps. Policy regularization, action normalization, and random initial exploration are not
reported in the paper. Regularization and action normalization do not affect the squashed
Gaussian policy implementation in SAC-CB, so we expected the most likely culprit for
the disparity in performance reported by Haarnoja et al. (2018)—and that which we could
reproduce—was the initial random exploration phase.

We re-ran the previous experiment using an initial exploration phase of 10,000 steps.
After this initial phase, action selection once again became on-policy, with actions selected
according to the policy learned by SAC. From here on, we refer to an algorithm A with
this initial exploration phase as A (EP) and without this initial exploration phase as A (No
EP). Figure 14 shows the learning curves over 30 runs for this additional variant of the SAC
algorithm, SAC (EP). The mean performance of this variant closely matches that reported
by Haarnoja et al. (2018), although the variability in performance is noticeably higher. This
is likely due to the fact that we used 30 seeds while the original work used only 5.

Finally, previous work found seed optimization in the RLLab code-base, meaning that
results are reported by sweeping over seeds and reporting performance only for the best seeds
(Islam et al., 2017). This seed optimization code is compatible with SAC-CB as well. As a
final attempt to reproduce the results of Haarnoja et al. (2018), we used seed optimization in

43

* See our paper: “Empirical Design in Reinforcement Learning”, Patterson et al., 2024

Adding implementation-level improvements to DDPG

• DDPG becomes competitive
when  
(a) reconsidering the noise
process for exploration 
(b) adding exploration phase

• Inset plot is from their work

Better RL

0 3
Timesteps (Millions)

0

7500

15000

Av
er

ag
e

Re
tu

rn

SAC

DDPGPPO

SQL TD315
00

0

10
00

0

0
50

00

SAC (EP)

DDPG (EP)

SAC (No EP)
DDPG (No EP)

Figure 16: Our attempt to run an experiment that closely resembles the principles laid out
in this document, particularly with respect to tuning baselines. For reference, the original
experiments Haarnoja et al. (2018) conducted with SAC on Half Cheetah have been inset.
DDPG has been tuned here for Half Cheetah. See text for details.

8 Conclusion

The goal of this document was to provide a comprehensive overview of important empirical
design decisions in reinforcement learning. The style is educational, with a focus on clear
examples and conceptual reasoning for making sound decisions. In the first few sections we
focused on outlining best practices for evaluating reinforcement learning algorithms. We then
revisited an existing result, as a case study, to highlight different conclusions in light of these
best practices. Much of the work focused on what to do, with some comments about what
to avoid. For clarity, therefore, we concluded the work with a more explicit list of common
errors to avoid. We hope for this document to particularly help newcomers to reinforcement
learning, but also to provide novel perspectives for any reinforcement learning empiricists.

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc
Bellemare. Deep reinforcement learning at the edge of the statistical precipice. Advances
in Neural Information Processing Systems, 2021.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds
for deep nets via a compression approach. In International Conference on Machine Learning.
PMLR, 2018.

Leemon Baird. Residual Algorithms: Reinforcement Learning with Function Approximation.
Machine Learning Proceedings, 1995.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment:
An Evaluation Platform for General Agents. Journal of Artificial Intelligence Research,
2013.

45

* See our paper: “Empirical Design in Reinforcement Learning”, Patterson et al., 2024

But now we have a working understanding of SAC,  
and can use it elsewhere

SAC is failing on classic control environments
• Many in RL would say these environments are too simple

*entropy, critic  
& actor stepsize  
tuned across  
environments

Our current goal is to remove (subtract not add)

And get a more minimal AC algorithm, inspired by theory

To really understand Actor-Critic and the theory behind it  
 

let’s talk about Actor-Critic as Approximate Policy Iteration

Refresher on Policy Iteration
• Policy iteration is built on a foundational result:  

the policy improvement theorem

The Policy Improvement Theorem
• For the current policy and action-values

• if we get the new policy by making it greedy in

• e.g.,

• then is guaranteed to be at least as good as

π qπ

π′￼ qπ

π′￼(s) = arg max
a∈𝒜

qπ(s, a)

π′￼ π

Policy Iteration
• For the current policy and action-values

• Get new policy by making it greedy in , then obtain and repeat

π qπ

π′￼ qπ qπ′￼

q

q

q

q

q = qπ

π = greedy(q)

q, π
q*, π*

Entropy-Regularized Greedification
• Can also get new policy by making it soft-greedy in ,

•

π′￼ qπ

πent(⋅ |s) = arg max
p

𝔼a∼p[q(s, a)]+τℋ(p) = Boltzmann(q(s, ⋅)/τ) ∝ exp(q(s, ⋅)/τ)

q

q

q

q

q = qπ

π = Boltzmann(q)

q, π
q*, π*

*caveat: must use soft action-values

In reality, we do Approximate Policy Iteration

Approximate Policy Evaluation

q = qπ

π = greedy(q)

q, π
q*, π*

Approximate Greedification and Evaluation

q = qπ

π = greedy(q)

q, π
q*, π*

Critic

Actor

The class of Actor-Critic algorithms can be seen as doing API

A Representative Actor-Critic Algorithm
• The agent interacts with the environment, taking actions

• It stores all that data in a replay buffer, to do mini-batch updates each step

•

a ∼ πθ(⋅ |s)

Buffer = {(s0, a0, r1, s1), (s1, a1, r2, s2), (s2, a2, r3, s3), …, (st−1, at−1, rt, st)}

An Actor-Critic Update with Replay
• Sample from the replay buffer (or sample a mini-batch)

• Update critic using Sarsa for prediction on

• Update moves closer to (approximate policy evaluation)

(s, a, r, s′￼)

qw (s, a, r, s′￼)

qw qπθ

An Actor-Critic Update with Replay
• Sample from the replay buffer (or sample a mini-batch)

• Update critic on

• Update actor using the log-likelihood update

Update increases , likelihood of actions with high value under
 (greedifies)

(s, a, r, s′￼)

qw (s, a, r, s′￼)

πθ

ã ∼ πθ(⋅ |s)
θ ← θ + ηqw(s, ã)∇ln πθ(ã |s)

𝔼a∼πθ(⋅|s)[q(s, a)]
qw

Entropy-regularized Actor-Critic Update
• Sample from the replay buffer (or sample a mini-batch)

• Update critic on

• Update actor using the log-likelihood update

Update increases , likelihood of actions with high value under
 while ensuring entropy stays higher (greedifies)

(s, a, r, s′￼)

qw (s, a, r, s′￼)

πθ

ã ∼ πθ(⋅ |s)
θ ← θ + ηqw(s, ã)∇ln πθ(ã |s)+η∇ℋ(πθ(⋅ |s))

𝔼a∼πθ(⋅|s)[q(s, a)]
qw

An Actor-Critic Update with Replay
• Sample from the replay buffer (or sample a mini-batch)

• Update critic using Sarsa on

• Update actor using the log-likelihood update

Update increases , likelihood of actions with high value under
 (greedifies)

(s, a, r, s′￼)

qw (s, a, r, s′￼)

πθ

ã ∼ πθ(⋅ |s)
θ ← θ + ηqw(s, ã)∇ln πθ(ã |s)

𝔼a∼πθ(⋅|s)[q(s, a)]
qw

Three Key Choices for Many Actor-Critic Algorithms

For a given state

1. How should we update the critic ? (do approximate policy evaluation)

2. How should we update the actor ? (do approximate greedification)

s

q

π

Three Key Choices for Many Actor-Critic Algorithms

For a given state

1. How should we update the critic ? (do approximate policy evaluation)

2. How should we update the actor ? (do approximate greedification)

3. How much importance (weight) do we put on each state?

s

q

π

Three Key Choices for Many Actor-Critic Algorithms

For a given state

1. How should we update the critic ? (do approximate policy evaluation)

2. How should we update the actor ? (do approximate greedification)

3. How much importance (weight) do we put on each state?*

• certain choices can cause very suboptimal behavior

• we solved an open problem (proved an off-policy policy gradient theorem)
and used this theoretical result to get a sound algorithm

s

q

π

* See our recent journal paper: “Actor Critic with Emphatic Weightings” Graves et al., JMLR, 2023

Outcome of the theorem
• Objective is

• where is the state distribution (e.g., distribution over states in data)

• Underlying update used by many actor-critic methods

• Correct gradient requires a reweighting, with the emphatic weight

J(θ) = 𝔼s∼μ,a∼πθ(⋅|s)[qπθ
(s, a)]

μ

∇J(θ) = 𝔼s∼μ,a∼πθ(⋅|s)[qπθ
(s, a)∇ln πθ(a |s)]

m

∇J(θ) = 𝔼s∼m,a∼πθ(⋅|s)[qπθ
(s, a)∇ln πθ(a |s)]

* See our journal paper: “Actor Critic with Emphatic Weightings” Graves et al., JMLR, 2023

Suboptimal policy under standard off-policy AC

• Semi-gradient (standard off-policy AC) updates with stationary
distribution under behavior policy

• Gradient reweights updates with emphatic weightings

s ∼

Graves, Imani, Kumaraswamy, and White

highest attainable value of the objective function (that of a deterministic policy that takes a0
everywhere), semi-gradient updates move the actor towards a suboptimal policy and reduce
the objective function along the way. Gradient updates, however, increase the probability
of taking a0 in all states and increase the value of the objective function.

<latexit sha1_base64="eK9x+whdgEm6FGH2RnKhkDNYn9Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtuv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAFfI2j</latexit>s0

<latexit sha1_base64="n6/W1KPfxCc6g5FHRqeg8V9bvKI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle92v9csVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXqt5FtX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMIhI2l</latexit>s2
<latexit sha1_base64="tmS9qh1fHLOKCF5YVbEDjZvnALQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAHAI2k</latexit>s1

<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t

<latexit sha1_base64="PJFEyWzlijbaMqM/9sWblLKKO0w=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4kJKVoh6LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhuLMbf3srq2vrGZmGruL2zu7dfOjhsGpVqyhpUCaXbITFMcMkallvB2olmJA4Fa4Wj26nfemLacCUf7DhhQUwGkkecEuukJunhc4R7pTKu4BnQMvFzUoYc9V7pq9tXNI2ZtFQQYzo+TmyQEW05FWxS7KaGJYSOyIB1HJUkZibIZtdO0KlT+ihS2pW0aKb+nshIbMw4Dl1nTOzQLHpT8T+vk9roOsi4TFLLJJ0vilKBrELT11Gfa0atGDtCqObuVkSHRBNqXUBFF4K/+PIyaV5U/MtK9b5art3kcRTgGE7gDHy4ghrcQR0aQOERnuEV3jzlvXjv3se8dcXLZ47gD7zPHxgVjis=</latexit>

a0, 0
<latexit sha1_base64="q0gLxn2jXhvdV6cQcgBMu7ZLT/M=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8SNmVoh6LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o5XVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1LLeCtRPNSBwK1gpHt1O/9cS04Uo+2HHCgpgMJI84JdZJTdLzz7HXK5W9ijcDXiZ+TsqQo94rfXX7iqYxk5YKYkzH9xIbZERbTgWbFLupYQmhIzJgHUcliZkJstm1E3zqlD6OlHYlLZ6pvycyEhszjkPXGRM7NIveVPzP66Q2ug4yLpPUMknni6JUYKvw9HXc55pRK8aOEKq5uxXTIdGEWhdQ0YXgL768TJoXFf+yUr2vlms3eRwFOIYTOAMfrqAGd1CHBlB4hGd4hTek0At6Rx/z1hWUzxzBH6DPHxmcjiw=</latexit>

a1, 0

<latexit sha1_base64="7IQ456+/7XmnExE9RaNeFK4pvK8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRj0YvHCvYD2qVk02wbm02WJCuUpf/BiwdFvPp/vPlvTLd70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCye3c7zxRpZkUD2YaUz/CI8FCRrCxUhsP3AtUG5QrbtXNgFaJl5MK5GgOyl/9oSRJRIUhHGvd89zY+ClWhhFOZ6V+ommMyQSPaM9SgSOq/TS7dobOrDJEoVS2hEGZ+nsixZHW0yiwnRE2Y73szcX/vF5iwms/ZSJODBVksShMODISzV9HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3vLLq6Rdq3qX1fp9vdK4yeMowgmcwjl4cAUNuIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx8bHY4t</latexit>

a0, 2
<latexit sha1_base64="q0gLxn2jXhvdV6cQcgBMu7ZLT/M=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8SNmVoh6LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o5XVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1LLeCtRPNSBwK1gpHt1O/9cS04Uo+2HHCgpgMJI84JdZJTdLzz7HXK5W9ijcDXiZ+TsqQo94rfXX7iqYxk5YKYkzH9xIbZERbTgWbFLupYQmhIzJgHUcliZkJstm1E3zqlD6OlHYlLZ6pvycyEhszjkPXGRM7NIveVPzP66Q2ug4yLpPUMknni6JUYKvw9HXc55pRK8aOEKq5uxXTIdGEWhdQ0YXgL768TJoXFf+yUr2vlms3eRwFOIYTOAMfrqAGd1CHBlB4hGd4hTek0At6Rx/z1hWUzxzBH6DPHxmcjiw=</latexit>

a1, 0
<latexit sha1_base64="PJFEyWzlijbaMqM/9sWblLKKO0w=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4kJKVoh6LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhuLMbf3srq2vrGZmGruL2zu7dfOjhsGpVqyhpUCaXbITFMcMkallvB2olmJA4Fa4Wj26nfemLacCUf7DhhQUwGkkecEuukJunhc4R7pTKu4BnQMvFzUoYc9V7pq9tXNI2ZtFQQYzo+TmyQEW05FWxS7KaGJYSOyIB1HJUkZibIZtdO0KlT+ihS2pW0aKb+nshIbMw4Dl1nTOzQLHpT8T+vk9roOsi4TFLLJJ0vilKBrELT11Gfa0atGDtCqObuVkSHRBNqXUBFF4K/+PIyaV5U/MtK9b5art3kcRTgGE7gDHy4ghrcQR0aQOERnuEV3jzlvXjv3se8dcXLZ47gD7zPHxgVjis=</latexit>

a0, 0 <latexit sha1_base64="JQaX48nOsP2DMNKsxRTamnUfzhQ=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4kLKRoh6LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurO9/eyura+sbm4Wt4vbO7t5+6eCwaVSqKWtQJZRuh8QwwSVrWG4FayeakTgUrBWObqd+64lpw5V8sOOEBTEZSB5xSqyTmqSHzxHulcp+xZ8BLROckzLkqPdKX92+omnMpKWCGNPBfmKDjGjLqWCTYjc1LCF0RAas46gkMTNBNrt2gk6d0keR0q6kRTP190RGYmPGceg6Y2KHZtGbiv95ndRG10HGZZJaJul8UZQKZBWavo76XDNqxdgRQjV3tyI6JJpQ6wIquhDw4svLpHlRwZeV6n21XLvJ4yjAMZzAGWC4ghrcQR0aQOERnuEV3jzlvXjv3se8dcXLZ47gD7zPHxsgji0=</latexit>

a1, 1

(a) Counterexample (b) Learning curves (c) Optimal action probability

Figure 1: (a) A counterexample that demonstrates the suboptimal behaviour of semi-
gradient updates. The semi-gradients converge for the tabular setting (Degris et al., 2012b),
but not necessarily under function approximation—such as with the state aliasing in this
MDP. The start state is denoted s0 and the terminal state is denoted t. States s1 and s2 are
aliased to the actor. The interest i(s) is set to one for all states. (b) Learning curves com-
paring semi-gradient updates and gradient updates, averaged over 30 runs with negligible
standard error bars. The actor has a softmax output on a linear transformation of features
and is trained with a step-size of 0.1 (though results were similar across all the stepsizes
tested). The dashed line shows the highest attainable objective function under the aliased
representation. (c) The probability of taking the optimal action (a0) in the aliased states.

The problem with semi-gradient updates boils down to the weighting. In an expected
semi-gradient update, each state tries to increase the probability of the action with the
highest action-value. There will be a conflict between the aliased states s1 and s2 because
their highest-valued actions di↵er. If the states are weighted by dµ in the expected update, s1
will appear insignificant to the actor, and the update will increase the probability of a1 in the
aliased states. The ratio between q⇡(s1, a0) and q⇡(s2, a1) is not enough to counterbalance
this weighting.

However, s1 has an importance that the semi-gradient update overlooks. Taking a
suboptimal action at s1 will also reduce q(s0, a0), and after many updates the actor will
gradually prefer to take a1 in s0. Eventually, the target policy will be to take a1 at all
states, which has a lower value under the objective function than the initial target policy.
This experiment highlights why the weight of a state should depend not only on its own
share of dµ, but also on its predecessors. The behaviour policy’s state distribution is not
the proper deciding factor in the competition between s1 and s2, even when optimizing the
excursions objective.

Proposition 10 formalizes the problem with semi-gradient updates by showing that,
under any ⌧ > 0, semi-gradient updates will not converge to a stationary point of the
objective function in the counterexample. The requirement ⌧ > 0 is only needed to ensure
existence of a stationary point; this result holds for ⌧ arbitrarily close to zero. The proof is
presented in Appendix E.

22

* See our journal paper: “Actor Critic with Emphatic Weightings” Graves et al., JMLR, 2023

Three Key Choices for Many Actor-Critic Algorithms

For a given state

1. How should we update the critic ? (do approximate policy evaluation)

2. How should we update the actor ? (do approximate greedification)

3. How much importance (weight) do we put on each state?*

• certain choices can cause very suboptimal behavior

• but state weighting only impacts how we trade-off accuracy under limited
function approximation (e.g., no suboptimality in tabular setting)

s

q

π

* See our journal paper: “Actor Critic with Emphatic Weightings” Graves et al., JMLR, 2023

Three Key Choices for Many Actor-Critic Algorithms

For a given state

1. How should we update the critic ? (do approximate policy evaluation)

• Recent theory accounts for some error in , with exact greedification* 
when using a KL to the previous policy, i.e., mirror descent update

s

q

q

* See nice papers on MD-MPI (Vieillard et al, 2020), Politex (Abbasi-Yadkori et al., 2019)

q = qπ

π = greedy(q)

q, π
q*, π*

Three Key Choices for Many Actor-Critic Algorithms

For a given state

1. How should we update the critic ? (do approximate policy evaluation)

2. How should we update the actor ? (do approximate greedification)

• lots of theory for unbiased/exact policy evaluation (policy gradient)

• but what about approximate policy evaluation and greedification?

s

q

π

Why can’t we always do exact greedification? 
Reason 1
• For discrete actions, can always exactly use the (soft) greedy policy

• e.g., exactly set π(a |s) = πent(a |s) =
exp(q(s, a)/τ)

∑b exp(q(s, b)/τ)

• For discrete actions, can always exactly use the (soft) greedy policy

• e.g., exactly set

• But! For continuous actions, sampling is expensive

π(a |s) = πent(a |s) =
exp(q(s, a)/τ)

∑b exp(q(s, b)/τ)

Boltzmann(q(s, ⋅))

Why can’t we always do exact greedification? 
Reason 1

• Even for discrete actions, it is common to add a KL divergence (with weight)
to the previous policy

• want where

λ
πt−1

πt = πkl πkl(a |s) ∝ πt−1(a |s) exp(q(s, a)/λ)

Why can’t we always do exact greedification? 
Reason 2

• Common to add a KL divergence (with weight) to the previous policy

• want where

•
Unrolling, we get

• Getting this policy requires averaging all previous critics (!!)

• even for discrete actions

λ πt−1

πt = πkl πkl(a |s) ∝ πt−1(a |s) exp(q(s, a)/λ)

πkl(a |s) ∝ exp 1
λ

t

∑
j=0

qj(s, a)

qj

Why can’t we always do exact greedification? 
Reason 2

Approximate greedification for Boltzmann
• Move parameterized policy closer to this desired policy

• reduce KL divergence between and

•

πθ

πθ πent

θ ← θ − α∇θKL(πθ(⋅ |s) | |πent(⋅ |s))

Note: this gradient actually gives us the same log likelihood update  
with entropy regularization 
 

 

Many actor-critic methods use an update like this one 

−τ∇θKL(πθ(⋅ |s) | |πent(⋅ |s)) = 𝔼a∼πθ(⋅|s)[q(s, a)∇ln πθ(a |s)] + τ∇ℋ(πθ(⋅ |s))

Approximate greedification for KL-policy
• Move parameterized policy closer to this desired policy

• or reduce KL divergence between and

•

πθ

πθ πkl

θ ← θ − α∇θKL(πθ(⋅ |s) | |πkl(⋅ |s))

An aside: there are two completely different uses for a KL here 
Role 1: KL penalty to the previous policy to define the target policy  
Role 2: KL loss for the actor update 

πkl

−λ∇θKL(πθ(⋅ |s) | |πkl(⋅ |s)) = 𝔼a∼πθ(⋅|s)[q(s, a)∇ln πθ(a |s)] + λ∇KL(πθ(⋅ |s) | |πt−1(⋅ |s))

Three Key Choices for Many Actor-Critic Algorithms

For a given state

1. How should we update the critic ? (do approximate policy evaluation)

2. How should we update the actor ? (do approximate greedification)

• improvement guarantee iff KL reduction greater than difference in average
critic error under the new and old policy*

• main point: complicated interaction between critic error and
approximation in greedification step

s

q

π

* See Corollary 9 in our journal paper: “Greedification Operators for Policy Optimization:
Investigating Forward and Reverse KL Divergences”, Chan et al., JMLR, 2022

Brief summary so far
• Actor-critic algorithms do approximate policy iteration

• Most theory about solution quality either for

• approximate policy evaluation, exact greedification to (MD-MPI, Politex,
Munchausen RL, Implicit Q-values)

• unbiased/exact policy evaluation, approximate greedification (REINFORCE,
CPI, NPG, TRPO, SAC theory, MPO theory, AC with emphatic weightings, FMA-PG)

• When both steps are approximate, need to be more careful about interactions
between errors

• and maybe work extra hard to do each step well

πkl

There is so much to do, what shall we tackle?

One direction is to reconsider this reverse KL underlying many AC algorithms

Forward vs Reverse KL and convexity
• Forward KL:

• convex for Boltzmann policies

• Reverse KL:

• non-convex even for nice distributions

KL(πent(⋅ |s) | |πθ(⋅ |s))

KL(πθ(⋅ |s) | |πent(⋅ |s))

* See our journal paper: “Greedification Operators for Policy Optimization: Investigating
Forward and Reverse KL Divergences”, Chan et al., JMLR, 2022

Forward vs Reverse KL and convexity
• Forward KL:

• convex for Boltzmann policies

• Reverse KL:

• non-convex even for nice distributions

KL(πent(⋅ |s) | |πθ(⋅ |s))

KL(πθ(⋅ |s) | |πent(⋅ |s))

* See our journal paper: “Greedification Operators for Policy Optimization: Investigating
Forward and Reverse KL Divergences”, Chan et al., JMLR, 2022

Greedification Operators for Policy Optimization

Finally, we use the RMSprop optimizer (Tieleman and Hinton, 2012). Overall trends for
Adam (Kingma and Ba, 2015) were similar to those for RMSprop, while results for SGD
resulted in slower learning for both FKL and RKL and a wider range of limit points, most
likely due to oscillation from the constant step-size. We focus on RMSprop here to avoid
any confounding factors associated with momentum.

Figure 5: KL loss over mean and standard deviation across temperature. The heatmaps
depict the loss for each mean and standard deviation pair. The last row depicts
the target distribution over which the KL loss is optimized. Note that the actual
action taken applies tanh to the samples of the resulting distribution (i.e., the
optimal mean is at tanh�1(0.5) ⇡ 0.55). FKL loss has been upper-bounded for
better visualization of minima. Arrows indicate the global minimum.

6.1.2 Loss Surface in the Bimodal Bandit

We might expect the FKL to have a smoother loss surface. Given that policies often are part
of an exponential family (e.g., softmax policy), having the policy ⇡ be the second argument
of KLp

q removes the exponential of ⇡, resulting in an objective that is an a�ne function of
the features. For example, if ⇡(a | s) / exp(�(s, a)) for features (s, a), the resulting FKL
becomes a sum of a term than is linear in �(s, a) and a term involving LogSumExp(�),
which is convex.

We visualize the KL loss surfaces in Figure 5 with five di↵erent temperatures. The
surfaces suggest the following.

1) The FKL surface has a single valley, while the RKL surface has two valleys that are
separated from one another. In this sense, the FKL surface seems much smoother than
the RKL surface, suggesting that iterates under the FKL will more likely reach the global
optimum than iterates under the RKL, which seem likely to fall into either of the valleys.

29

Motivates reconsidering local updates that can get stuck

And exploring alternatives

Next
• Explain our GreedyAC algorithm, inspired by this motivation

Next
• Explain our GreedyAC algorithm, inspired by this motivation

• Work lead by PhD student Samuel Neumann

* See our paper: “Greedy Actor-Critic: A New Conditional Cross-Entropy Method for Policy
Improvement”, Neumann et al., ICLR, 2023

A Brief Interlude about CEM

Goal: find arg max
θ

f(θ)

A Brief Interlude about CEM

Goal: find arg max
a

q(a)

A Brief Interlude about CEM
Cross-Entropy Method

J

π

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 4 16

q

a

Goal:  
find arg max

a
q(a)

A Brief Interlude about CEM
Cross-Entropy Method

J

π

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 4 16

q

a

Goal:  
find arg max

a
q(a)

Introduce distribution 
 that concentrates 

on maximal a
π

Cross-Entropy Method

J

π

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 5 16

CEM in Action

q

a

Goal:  
find arg max

a
q(a)

Sample a from π

Cross-Entropy Method

J

π

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 6 16

CEM in Action

q

a

Goal:  
find arg max

a
q(a)

Take top percentile 
according to q(a)

Cross-Entropy Method

J

π

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 7 16

CEM in Action

q

a

Goal:  
find arg max

a
q(a)

Increase likelihood of  
a in top percentile

We want to concentrate on top actions of  
Like CEM, but now conditioned on states

π(a |s) q(s, a)

Conditional CEM Algorithm
• Assume action-values are fixed and given, for now

• Learn actor policy that gradually increase likelihood of top actions,
across states

q

π(a |s)

Conditional CEM Algorithm
• Assume action-values are fixed and given, for now

• Learn actor policy that gradually increase likelihood of top actions,
across states

• Issue: will likely concentrate too quickly, before seeing all states

• i.e., we can’t just apply the exact same idea as CEM naively

• Fix: introduce a more slowly changing proposal policy

q

π(a |s)

π(a |s)

π̃(a |s)

Conditional CEM in ActionUsing the CCEM to Learn a Policy

π̃ Proposal Policy

I∗ I∗ I∗

∇π̃(s) = ∇
∑
I∗

ln(π̃(a|s))

∇π(s) = ∇
∑
I∗

ln(π(a|s))

+∇H(π̃(·|s))Q(s, ·)

Q(s, ·)
π Actor Policy

Actions Actions Actions

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 12 16

Sample a state s (or mini-batch of states)

Sample 15 actions

* Note: we do not actually use a uniform distribution for the policies,  
it is just easier to visualize here in this example 
 
Identify top 5 (namely the 0.33 percentile)

a1, a2, …, a15 ∼ π̃(⋅ |s)

I* =

Conditional CEM in ActionUsing the CCEM to Learn a Policy

π̃ Proposal Policy

I∗ I∗ I∗

∇π̃(s) = ∇
∑
I∗

ln(π̃(a|s))

∇π(s) = ∇
∑
I∗

ln(π(a|s))

+∇H(π̃(·|s))Q(s, ·)

Q(s, ·)
π Actor Policy

Actions Actions Actions

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 12 16

Conditional CEM in ActionUsing the CCEM to Learn a Policy

π̃ Proposal Policy

I∗ I∗ I∗

∇π̃(s) = ∇
∑
I∗

ln(π̃(a|s))

∇π(s) = ∇
∑
I∗

ln(π(a|s))

+∇H(π̃(·|s))Q(s, ·)

Q(s, ·)
π Actor Policy

Actions Actions Actions

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 12 16

Conditional CEM in ActionUsing the CCEM to Learn a Policy

π̃ Proposal Policy

I∗ I∗ I∗

∇π̃(s) = ∇
∑
I∗

ln(π̃(a|s))

∇π(s) = ∇
∑
I∗

ln(π(a|s))

+∇H(π̃(·|s))Q(s, ·)

Q(s, ·)
π Actor Policy

Actions Actions Actions

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 12 16

Conditional CEM in ActionUsing the CCEM to Learn a Policy

π̃ Proposal Policy

I∗ I∗ I∗

∇π̃(s) = ∇
∑
I∗

ln(π̃(a|s))

∇π(s) = ∇
∑
I∗

ln(π(a|s))

+∇H(π̃(·|s))Q(s, ·)

Q(s, ·)
π Actor Policy

Actions Actions Actions

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 12 16

Theory for why we have two policies
• Two timescale analysis:

• and changing at a slower timescale, so we can consider them fixed
when analyzing the update for the actor

• Result says updates behaves like CEM, in expectation across states

• Tracks the CEM update, as (slowly) changes

q π̃
π

q

Policy Improvement Guarantees
• Log-likelihood update to corresponds to minimizing a forward KL to a

percentile policy

•

• Percentile policy on guaranteed to be a better policy

• namely for

π

KL (πpercentile(⋅ |s) | |π(⋅ |s))
qπ

𝔼a∼π′￼
[qπ′￼

(s, a)] ≥ 𝔼a∼π[qπ(s, a)] π′￼ = πpercentile

Policy Improvement Guarantees
• Log-likelihood update to corresponds to minimizing a forward KL to a

percentile policy

•

• Percentile policy on guaranteed to be a better policy

• namely for

• We named the algorithm GreedyAC because it eventually concentrates on
the greedy actions (unregularized), unlike Soft Actor-Critic

π

KL (πpercentile(⋅ |s) | |π(⋅ |s))
qπ

𝔼a∼π′￼
[qπ′￼

(s, a)] ≥ 𝔼a∼π[qπ(s, a)] π′￼ = πpercentile

Contrasting to SAC and other AC methods

• GreedyAC uses:

• Most AC methods minimize a reverse KL to or

• or

KL (πpercentile(⋅ |s) | |π(⋅ |s))
πent πkl

KL (π(⋅ |s) | |πent(⋅ |s)) KL (π(⋅ |s) | |πkl(⋅ |s))

Similarity to MPO

• GreedyAC uses:

• MPO minimizes a forward KL to , by increasing likelihood of actions
sampled from

•

KL (πpercentile(⋅ |s) | |π(⋅ |s))
πkl

πkl

KL (πkl(⋅ |s) | |π(⋅ |s))

Back to our simple classic control environments
• All agents use neural networks, the Adam optimizer, and replay

*entropy, critic  
& actor stepsize  
tuned across  
environments

*more results in the paper, on MinAtari and Swimmer from Mujoco

Why might GreedyAC be better than SAC?
• SAC is sensitive to its entropy parameter

• Entropy potentially plays many roles in SAC

• prevents policy collapse, promotes exploration, smoothing the objective

Why might GreedyAC be better than SAC?
• SAC is sensitive to its entropy parameter

• Entropy potentially plays many roles in SAC

• prevents policy collapse, promotes exploration, smoothing the objective

• GreedyAC only uses the entropy to slow the concentration of the proposal
policy (one role)

Understanding sensitivity to entropyGreedy Actor-Critic: Sensitivity to Hyperparameters

Neumann, Lim, Joseph, Pan, White, White (UofA) Greedy Actor-Critic 15 16

• Solid area is range
of performance
across different
entropy values

• Wider is bad

• Lower is bad

Conclusions
• Finicky behavior of actor-critic methods might be due to interacting choices

• did not reweight states, did not get critic error low enough, did not do
enough greedification, or did not avoid changing the policy too much…

Conclusions
• Finicky behavior of actor-critic methods might be due to interacting choices

• did not reweight states, did not get critic error low enough, did not do
enough greedification, or did not avoid changing the policy too much…

• Initial results for GreedyAC look promising as a simpler actor update

• intuitive percentile parameter, does not rely on entropy

• one part of this puzzle, we are continuing to work on interacting choices

Conclusions
• Finicky behavior of actor-critic methods might be due to interacting choices

• did not reweight states, did not get critic error low enough, did not do
enough greedification, or did not avoid changing the policy too much*…

• Initial results for GreedyAC look promising as a simpler actor update

• intuitive percentile parameter, does not rely on entropy

• one part of this puzzle, we are continuing to work on interacting choices*

* RLC 2025 paper “Investigating the Utility of Mirror Descent in Off-policy
Actor-Critic”

Conclusions
• Finicky behavior of actor-critic methods might be due to interacting choices

• did not reweight states, did not get critic error low enough, did not do enough
greedification, or did not avoid changing the policy too much…

• Initial results for GreedyAC look promising as a simpler actor update

• intuitive percentile parameter, does not rely on entropy

• one minor part of this puzzle, we are working on interacting choices

• This is an exciting time to be making better actor-critics

• lots of theoretical insights, more can make its way into practice

• lots to understand empirically about the sea of algorithms
Questions?

