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What are rewards?

Overall function: keep gene carriers (agents) alive and
ensure propagation of their genes into the next generation.

Daily function: provide essential substances for survival
and activities for gene propagation.

Rewards are all attractive stimuli, events, objects, situations
and activities that are evolutionary beneficial.

Thus, rewards are not defined by their physical and chemical properties
but by their usefulness for the survival and gene propagation of
biological agents.
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Rewards have three principal behavioural functions

Learning (positive reinforcement) Approach behaviour and economic decisions
Testable using experimental psychology: Rewards are attractive, worth working for.
Pavlovian and operant conditioning, Testable using experimental economics,
based on animal learning theory. based on economic decision theory.
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Positive emotions & mental states
Pleasure (~liking) reaction => state of happiness
Desire (~wanting) => goal, purpose, free will
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Utility maximisation as basis for evolutionary fitness:
Surviving by getting more reward than others

200
Competition between two species
of Paramaecium
150 1 (unicellular ciliated protozoan) A ¥
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Both did well for four days,

| then one species disappeared,

whereas the other survived.



Principal brain structures for reward
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Extracellular recordings from individual dopamine neurons

Definition:

A dopamine neuron is a
neuron that releases
a neurotransmitter
called dopamine.
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The intuitive metric of neuronal information is a rate code:
number of action potentials/second.

The neuronal rate code originating from the opening of
Na-channels in sensory receptors serves as a neuronal
metric for stimulus strength (Adrian & Zotterman 1926).
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The neuronal reward signal:
action potentials provide a rate code for reward.
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Behavioural reward functions
Learning
Approach & choice

Positive emotions
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The dopamine reward signal
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Pavlovian conditioning

Making a stimulus predictive
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Pavlovian conditioning

Making a stimulus predictive

Before After
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Pavlovian conditioning

Making a stimulus predictive

Stimulus \‘




Dopamine neurons report reward prediction errors (RPE).
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Positive dopamine prediction error signal during learning
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Dopamine neurons report RPEs for higher-order rewards,
complying with Temporal Difference (TD) learning.

500 ms Untr,

Reward

Reward
Ward: schultz, Apicella & Ljungberg JN 1993

Schultz JNP 1998
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Time sensitivity of dopamine signal: excitation with unpredicted reward,
and inhibition with reward omission at time of expected reward
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The dopamine reward signal reflects RPE not just across trials (A - V; Rescorla-Wagner RL)
but RPE across time steps (Av/At; Temporal Difference RL)

Hollerman & Schultz NN 1998



Maximising reward via Machine Lear

Current reward

Discounted sum of
all future rewards
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(Tempo*ral Differe_nce Learning (TD) achieves optimal value function (Sutton & Barto 1981).\
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Machine Learning becomes biologically plausible due to the

neuronal (dopamine) implementation of prediction error.
Now, Reinforcement Learning outsmarts human intelligence.
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Postsynaptic effects of phasic dopamine signal

Cortical inputs
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Excitation and inhibition of dopamine neurons
induces behavioral learning and unlearning
(positive and negative reinforcement).
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Reward maximization by recursive dopamine RPE coding:

positive dopamine RPE signal drives agents to more reward

|eusis 34y
aulwedoq

dd4d+
piemay

uonoIpaid

|eusls 344
aulwedoq

Jd4+
piemay

uonoIpaid

|eusis 344
aulwedoq

Jd4+
piemay

uonoIpaid

|eusis 344
aulwedoq

in order to get positive RPE signals again.

Jd4+
piemay

uonoIpaid

<== 9N|eA piemay

Schultz PNAS 2024



A dopamine mechanism for reward maximization:
[teration of dopamine reward prediction error signal and
reinforcement leads to continuous reward seeking

Seek dopamine Seek better reward Get that beyé Th? efs{ed dopamine ex_c lt_atlon
increades reward prediction

excitation. than predicted. reward. ; . .
(via reinfprcement learning).

)

For same dopaMine Againgt'the higher prediction,
excitation, seek be next gbpamine excitation to same
reward than before. reward is lower.

Iteration leads to ever more reward seeking. l




Error-driven mechanisms
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Reward learning

Error = reward - prediction
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Why do we go to this pub?
We seek excitation of our dopamine neurons.







An attentional dopamine response component preceding
the dopamine reward prediction error (RPE) signal
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Distinct phasic dopamine signals

Reward prediction error vs. behavioural activation (including movement)

Dopamine changes with large

movements in monkeys
(> 35 muscles active)
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Optogenetics kindled interest in rodents:

again dopamine changes with movements
(hundreds of muscles, sensory receptors, cognition)

[ Running wheel or track ball ]

o

Start Tone Tum { | Tum
Initiation Instruction Execution End
\\/ \/ l_'Goal
yd Acceleration Movement start
401 50 ) 17 g 10
“ M, S s
i — 95
1o f,uf = ENE
0\./\/‘ < 0 1 0 mr{; 0
024 6 sec 8 0.75 0 0755 ~ 08 ° 08

Howe,..., Phillips, Graybiel Nature 2013 Howe & Dombeck Nature 2016 Dodson et al. (Magill) PNAS 2016

Explanation: rodent tasks involve plenty of movements (evidenced here in cortical activity) )
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What does 'dopamine’ do?

RPE

Tonic
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What does 'dopamine' do?

Sensory Reward

Movement prediction

TD learning (ramp) error
RPE  Reward risk (ramp) (RPE)

Reward expectation (ramp)

Arousal - behavioral activation

Prediction-dependent Prediction-dependent
attention (salience) attention (salience)

Tonic Tonic

Stimulus Reward
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What does 'dopamine’ do?

Sensory Reward

Movement prediction

TD learning (ramp) error
RPE  Reward risk (ramp) (RPE)

Reward expectation (ramp)
Arousal - behavioral activation
Prediction-dependent Prediction-dependent
attention (salience) attention (salience)
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Behavioural reward functions
Learning
Approach & choice

Positive emotions



Biological organisms are not silicon machines:
Reward value is subjective

N : =\

ou eat stek # 1 | ... steak # 2 ENUGH at teak # 3!

Subjective steak value decreases with satiety
(while objective steak value stays constant).



Inferring subjective reward value
from observable choice

Discrete choice among 2 options

* option set includes all options (collectively exhaustive)
* options are mutually exclusive (choose only one)
* options are distinct and well-separated
* options alternate pseudorandomly
* options appear simultaneously
* options cost is constant
=> everything well-controlled, action distinct from reward

Now we can estimate subjective value
=> same value with equal choice
('choice indifference': immune from slope of choice function)
(repeated testing: stochastic choice)




The dopamine RPE signal reflects subjective reward value.
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Subjective value inferred from choice:
more frequent choice => higher value

Lak, Stauffer & Schultz PNAS 2014

Dopamine signal follows
subjective value
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Economic utility defines subjective reward value

A mathematical function for
subjective reward value

Utility u(x)

Daiel Bernoulli Von Neumann &

1738 Morgenstern 1944

Physical value x



Choice: do monkeys and their reward neurons
know what they are doing?

Rational choice requires choice of subjectively best reward:
more is better: first-order stochastic dominance

Monkeys Dopamine neurons signal

maximise reward the best reward
17 157
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The dopamine utility prediction error signal
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P (choice

Choice: do monkeys and their reward neurons
know what they are doing?

Rational choice means choice of best reward:
choose according to subjective value (not objective value):
mean-preserving spread

Monkeys maximise Distinguish subjective from Dopamine neurons signal
subjective value objective value the subjectively best reward
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The intuitive metric of neuronal information is a rate code:
number of action potentials/second.

The neuronal rate code originating from the opening of
Na-channels in sensory receptors serves as a neuronal
metric for stimulus strength (Adrian & Zotterman 1926).

Deflection
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Value metric as basis of choice:

Winner-Take-All choice mechanism and its value inputs

Chosen Chosen
option B option B

IYI

+
threshold

Value Value
option A option B

~N

Value of each option A and B is composed of:

Objective (physical) value:
Amount, probability, reward type, effort

+ Subjective modifiers:
Utility, weighted probability, weighted effort, reference, risk, delay, satiety

+ Environmental influences:
Personal history, convention, compassion, cooperation, coordination, social norms, moral, ethics, tradition,
culture, strategy, heuristics, idiosyncrasy, prejudice, superstition, parochialism, nationalism







