Deep Reinforcement Learning (Sp25)

Instructor: Dr. Mohammad Hossein Rohban

Quiz Solutions - Lecture 17 Solution By: Arshia Gharooni

Q1

Give a concise argument showing that, for sufficiently small step-size, a vanilla policy-gradient update is guaranteed to improve performance when the advantage function is uniformly bounded.

Since $A_{\pi_{\theta_k}}$ is bounded by some constant C, the second-order term in the performance-difference expansion can be bounded by a quantity proportional to α_k^2 times C. Choosing a step-size such that $D_{\text{KL}}(\pi_{\theta_k} || \pi_{\theta_{k+1}}) \leq 2(1-\gamma)\alpha_k^2/C$ ensures that the negative second-order penalty does not outweigh the positive first-order gain, resulting in $J(\theta_{k+1}) \geq J(\theta_k)$.

Q2

Explain why the soft Bellman operator T_{soft}^{π} is still a γ -contraction in the supremum norm, even though it contains an additional entropy term.

The operator differs from the standard Bellman operator only by an additive term $-\alpha \log \pi(a|s)$, which depends on (s, a) but not on the next-state value estimate. Contraction properties hinge on the γ factor multiplying the future value; since this factor remains unchanged, the operator remains a γ -contraction and enjoys a unique fixed point.

Deep Reinforcement Learning (Sp25)

Instructor: Dr. Mohammad Hossein Rohban

Quiz Solutions - Lecture 17 Solution By: Arshia Gharooni

Q3

The actor update in SAC can be viewed as minimising a Kullback–Leibler divergence between the current policy and a Boltzmann distribution derived from Q_{ψ} . Which KL direction is minimised?

- A. $D_{\mathrm{KL}}(\exp(Q/\alpha) \| \pi_{\theta})$
- **B.** $D_{\mathrm{KL}}(\pi_{\theta} \parallel \exp(Q/\alpha))$
- C. The symmetric Jensen–Shannon divergence between the two distributions
- D. Neither; SAC avoids KL divergence entirely

Correct Answers: B

The policy is updated by information projection onto the Boltzmann target, solving

 $\arg\min_{\boldsymbol{\pi}} \mathbb{E}_s \left[D_{\mathrm{KL}} \left(\pi(\cdot|s) \parallel \exp(Q_{\psi}/\alpha) \right) \right],$

thus minimising the forward KL with the policy π_{θ} appearing in the first argument.

Q4

Which statement best describes the role of the temperature parameter α in Soft-Actor-Critic?

- A. It rescales the discount factor to balance bias and variance.
- B. It controls the trade-off between the expected return and the policy's entropy.
- C. It stabilises the target network by Polyak averaging.
- D. It enforces a hard trust region on the policy update.

Correct Answers: B

The temperature α weights the entropy bonus $\mathcal{H}(\pi(\cdot|s))$ in the objective J_{soft} , tuning exploration versus exploitation.