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Stanford, and Pieter Abbeel’s compact series on RL.
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Motivation
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Motivation (cont.)
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Motivation (cont.)
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Motivation (cont.)
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• Supervised learning: 

• Ground truth is known in advance.

• Training data are usually static and iid.

• Reinforcement learning:
• The best action (policy) is usually unknown a priori.

• Sequence of actions is needed.

• A series of trial and error (search) is performed.
• Usually delayed reward shows goodness of the trial.

• Data is dynamic (exploration) and non-iid.



What is Reinforcement Learning?
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The Anatomy of Reinforcement Learning
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gripping objects 
on random or 

else “best 
guess” locations

how well was our
choice of (x, y, z); 
execute gripping!

improve our 
“best guess” 

or ... when I grip some
object on a specific 

location, what 
happens physically; 
i.e. how its (x, y, z)’s 

change?



A Simple Example
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Another Example
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Model-based RL
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Value-based RL
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Value-based RL (cont.)
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Direct Policy Gradient
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Actor-critic: value functions + policy gradients
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Where do rewards come form?
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• An expert gives us the reward

• Learning from demonstrations

• Directly copying observed behavior

• Inferring rewards from observed behavior (inverse reinforcement 
learning)



Motivation (cont.)
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• SL = supervised learning; UL = unsupervised learning; RL = reinforcement 
learning; IL = imitation learning 

• Imitation learning typically assumes input demonstrations of good policies 

• IL reduces RL to SL. IL + RL is promising area 

Courtesy: CS 234 course, Stanford



Planning vs learning
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• Two fundamental problems in sequential decision making

• Reinforcement learning:

• The environment is initially unknown

• The agent interacts with the environment

• The agent improves its policy 

• Planning:

• A model of the environment is known

• The agent performs computations with its model (without any external 
interaction) 

• The agent improves its policy

• a.k.a. deliberation, reasoning, introspection, pondering, thought, search 



Why should we study deep reinforcement learning?
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Data-driven AI vs. RL
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A Bitter Lesson (Richard Sutton)
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“We have to learn the bitter lesson that building in how we think we 
think does not work in the long run. The two methods that seem to scale 
arbitrarily ... are learning and search

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Courtesy: CS 285 course, Berkeley

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Superintelligence 
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• The models are trained based on human annotations and preferences. 

• Can they get smarter than humans?
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• Stochastic Processes (Prob. And Stats, Markov Processes, Estimation 
Theory, Information Theory)

• Optimization (Lagrange Multipliers)

• Deep Learning (Concepts and Pytorch)


