Computer Engineering Department

Reinforcement Learning: ”
Model Based RL

Mohammad Hossein Rohban, Ph.D. N’

Spring 2025 \/

Courtesy:. Most of slides are adopted fraqm CS 285 Berkeley.



Overview

* Introduction to model-based reinforcement learning

* What if we know the dynamics? How can we make
decisions?

 Stochastic optimization methods
* Monte Carlo tree search (MCTS)
* Trajectory optimization

* Goal: Understand how we can perform planning with
known dynamics models in discrete and continuous
spaces
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Recap: Model-Free RL

T
po(s1,aq,... sT,aT H (at|st)p(sis1]st, ar)

0
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0* = arg max B reapoli) [Z r(s¢, at)]
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Recap: Model-Free RL

@~
(s'|s, a)

W,

g
po(s1,ar,... ST73-T H at|StM

assume this is unknown
don’t even attempt to learn it

0* = arg meax ETNpe(T) [; T(St, at)]
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What if we knew the transition dynamics?

* Often we do know the dynamics
 Games (e.g., Atari games, chess, Go)
 Easily modeled systems (e.g., navigating a car)
e Simulated environments (e.g., simulated robots, video games)
e Often we can learn the dynamics
* System identification — fit unknown parameters of a known model
* Learning — fit a general-purpose model to observed transition data

Does knowing the dynamics make things easier?
Often, yes!
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Model-based RL

 Model-based reinforcement learning: learn the transition dynamics,
then figure out how to choose actions.

* Today: how can we make decisions if we know the dynamics?
* a. How can we choose actions under perfect knowledge of the system dynamics?
* b. Optimal control, trajectory optimization, planning
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The deterministic case

T

at,...,ar = arg aln’la');T ZT(St,at) s.t. At+1 — f(stv at)
S e
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The stochastic open-loop case

P(St+1 \St, at)

ZT s¢,ag)|ar, ..., ar

.....

why IS th|s suboptumal? :



The stochastic open-loop case

02 (5239) bl Ll Bl pgidilgl (ghie sl ySan uy Jlg=l PEID &5 3aidin3il395) (5)law W3l @) Cuwly> (50 ()
9 oL 23U @S 3,915l by iy (3851 Gl lgaiunyy CawlyigaiadS 3951 0)5Vlg el

23)S G Ui pA])39S Sledtwy 2lpl

2 1y WsimeS (0 ©lg2yd e ()T CudS 3olgSgl Teumlyigy Lo gy sogljllail-

U LlgS @S (50 0.3)9T A2lgS) (2138 0 3V Tigl 03)95 a2 wyy (ogljlasr

L S)lo Giredie:add (70 Gwl o9 095 (ol b)Y EU TS iy puy 0 0Ly

Sy Gy Jle=l 4339y 03 03l ol as 4.395 Ol Jaw))loy (g US> @) ()92
Tl d.’)gi.g":&éf »-

03,0 :¢udS)law

P hlas unf)S

adidly L 2w oplil)lew

"l 03)95 423w oljlas-

) i) lay

Ll (5395 (69)15.5L])l95 1euaS S

a2 395 yiinnjs gwly bl )ley

95 Ul )l 4 WT aglS gl S lanbjl eSS Gl ase-
readS gunly )3 393 030w Cules 4 Yl izl Uy il oS )lay

99 2T (50 Jdly3e

1o 3L, Sln pus sbaly S S

Lecture 11 -9



open-loop vs. closed-loop case

closed-loop open-loop

only sentatt=1,
then it’s one-way!
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The stochastic open-loop case

form of 77

,°

neural net

time-varying linear

KtSt -+ kt \O(:b\
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Stochastic optimization

abstract away optimal control/planning:

a,...,ar =arg max J(ai,...,ar) A = argmax J(A)

ai,...,ar , A
Y

don’t care what this is

simplest method: guess & check  “random shooting method”

1. pick Aq,..., Ay from some distribution (e.g., uniform)

2. choose A; based on arg max; J(A;)
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Cross-entropy Method (CEM)

1. pick Aq,..., AN{Jrom some distributionde.g., uniform)

2. choose A; based on arg max; J(A;) can we do better?

J(A)

A

s

ot

cross-entropy method with continuous-valued inputs:

= 1. sample Ay,..., Ay from p(A)
2. evaluate J(Aq),...,J(AnN)
3. pick the elites A;, ,...,A;,, with the highest value, where M < N
4. refit p(A) to the elites A;,,..., A

M
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Pros and Cons

* Pros
e Could be very fast (Parallelizable)
* Extremely simple

* Cons
* Very harsh dimensionality limit
* Only open-loop planning
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Discrete Case: Monte Carlo Tree Search

discrete planning as a search problem
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Discrete Case: Monte Carlo Tree Search

how to approximate value without full tree?
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Discrete Case: Monte Carlo Tree Search

can’t search all paths — where to search first?
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intuition: choose nodes with best reward, but also prefer rarely visited nodes
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Discrete Case: Monte Carlo Tree Search

generic MCTS sketch )
1
1. find a leaf s; using TreePolicy(s1) D o
. " N
2. evaluate the leaf using DefaultPolicy(s;) > N
3. update all values in tree between s; and s; S9 59
take best action from s; 7 %\\ 7 %\\
Y v NY; v
UCT TreePolicy/(s;)
) 53 S3 S3 S3
if s; not fully expanded, choose new ay
else choose child with best Score(s;11) E E E E
s s s s
= = = =

~ Q(sy) 2In N(s¢—1)
Score(s;) = N (s,) + 20\/ N (sy)
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Start

Discrete Case: Monte Carlo Tree Search

Current = S

Rollout

Is current a leaf
node?

No
\ 4

7y

Yes

Is the n; value for
current 0?

No
\ 4

current = child node

of current that
maxmises UCB1

For each available

action from current

add a new state to
the tree

v

Current = first new
child node

v

Rollout
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Additional reading

* Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen,
Tavener, Perez, Samothrakis, Colton. (2012). A Survey of Monte
Carlo Tree Search Methods.

e Survey of MCTS methods and basic summary.
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Today’s Lecture

1. Basics of model-based RL: learn a model, use model for control

» Why does naive approach not work?
* The effect of distributional shift in model-based RL

2. Uncertainty in model-based RL
3. Model-based Policy Learning

» Goals:
* Understand how to build model-based RL algorithms
» Understand the important considerations for model-based RL
» Understand the tradeoffs between different model class choices
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Why learn the model?

If we knew f(s;,a;) = s;11, we could use the tools from last week.
(or p(s¢+1|st,a¢) in the stochastic case)

So let’s learn f(s;,a;) from data, and then plan through it!

model-based reinforcement learning version 0.5:
1. run base policy m(a¢|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — s}||?

3. plan through f(s,a) to choose actions
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Does it work?

 Essentially how system identification works in classical robotics
« Some care should be taken to design a good base policy

« Particularly effective if we can hand-engineer a dynamics representation using our
knowledge of physics, and fit just a few parameters
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Does it work?

L. run base policy mo(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — st

3. plan through f(s,a) to choose actions

Pr;(St) 7 Do (St)

« Distribution mismatch problem becomes exacerbated as we use more
expressive model classes
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Can we do better?

can we make pr,(8¢) = pr,(8¢)?

where have we seen that before? need to collect data from p, ; (s¢)

model-based reinforcement learning version 1.0:
1. run base policy mg(a¢|s;) (e.g., random policy) to collect D = {(s,a,s’);}
. learn dynamics model f(s,a) to minimize Y, || f(si, a;) — s}||?

. plan through f(s,a) to choose actions

= W DN

excecute those actions and add the resulting data {(s,a,s’);} to D
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What if we make a mistake?
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Can we do better?

(N | ‘) " \|ODEL ERRORS
| S

model-based reinforcement learning version 1.5:

1. run base policy m(a¢|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
. learn dynamics model f(s,a) to minimize Y, || f(si, a;) — s}||?
. plan through f(s,a) to choose actions

. execute the first planned action, observe resulting state s’ (MPC)

every N steps
)] FEN e Do

. append (s, a,s’) to dataset D
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How to replan?

model-based reinforcement learning version 1.5:
1. run base policy m(a¢|s;) (e.g., random policy) to collect D = {(s,a,s’);}
to minimize Y, || f(si, a;) — s}||?

. learn dynamics model f(s,a)

2
3. plan through f(s,a) to choose actions
4
5)

. execute the hirst planned action, observe resulting state s’ (MPC)

every N steps

. append (s,a,s’) to dataset D

modeling error:

* The more you replan, the less perfect each individual plan
needs to be

« Can use shorter horizons
« Even random sampling can often work well here!
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Uncertainty in Model-Based RL
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A performance gap in model-based RL

Cheetah
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model-free training
(about 10 days...)

pure model-based
(about 10 minutes real
time)

Nagabandi, Kahn, Fearing, L.

ICRA 2018
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Why the performance gap?

‘ Cheetah
6000

5000

”g 4000
%
o 3000
2
& 2000
E 1000
2 w— Mb

" W/ T

—— Mb-Mf (ours)
1000
10° I 10® 10
. ...but still have high capacity over
need to not overfit gh capacity
here

here...
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Why the performance gap?

model-based reinforcement learning version 1.5:

1. run base policy m(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — s}||*
. plan through f(s,a) to choose actions

. execute the first planned action, observe resulting state s’ (MPC)

every N steps
ot RN o Do

. append (s, a,s’) to dataset D

very tempting to go
here...




How can uncertainty estimation help?

20

ﬁ,.)i,._\,-,.,('ﬂ ' ' ' pﬂ'f (St) # P (St)
— Prediction

15 H mmm 95% confidence interval

expected reward under high-variance prediction
is very low, even though mean is the same!
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Intuition behind uncertainty-aware RL

model-based reinforcement learning version 1.5:
1. run base policy m(a¢|s;) (e.g., random policy) to collect D = {(s,a,s’);}
learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?

plan through f(s,a) to choose actions

execute the first planned action, observe degulting state s’ (MPC)

AU

every N steps

append (s, a,s’) to dataset D

only take actions for which we think we’ll get high
reward in expectation (w.r.t. uncertain dynamics)

This avoids “exploiting” the model
The model will then adapt and get better



There are a few caveats...

Need to explore to get better

Expected value is not the same as pessimistic value

Expected value is not the same as optimistic value

...but expected value is often a good start
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Uncertainty-Aware Neural Net Models
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How can we have uncertainty-aware models?

Idea 1: use output entropy l l L/\
" . s (s fp(s2fp(sa >

Si41

Al

P(St+1(se,as)
why is this not enough?

Two types of uncertainty: o

aleatoric or statistical uncertainty
epistemic or model uncertainty

A

h is th . h o “the model is certain about the data, but we are not
what is the variance here” certain about the model”
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How can we have uncertainty-aware models?

ldea 2: estimate model uncertainty

“the model is certain about the data, but we are not certain about the model”

usually, we estimate
arg max log p(0|D) = arg max log p(D|0)

= P (Se+1]st,ar) can we instead estimate p(6|D)?

- paramcters ¢ S~

the entropy of this tells us

‘ the model uncertainty!
predict according to: <_,/ o8 s, |
/[)(St+1 |St, at, 9)p(9|p)d0 5, 08 l I o5 0 0s 1
29 ?5_-0/’ >““1
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Quick overview of Bayesian neural networks

common approximation:

p(0|D) = H p(6;|D)
( ID ,Ul Uz \
expected weight uncertainty about

the weight

For more, see:
Blundell et al., Weight Uncertainty in Neural Networks Gal et al., Concrete Dropout
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Bootstrap ensembles

p(St+1 |St: at)

N Y .’"\I 'avYavYa'

!

(s¢,at)

Train multiple models and see if they agree!

1 i
formally: p(6|D) ~ N ZO(HZ-)

2

1
p(St+1lst, at,0)p(0|D)do ~ N ZP(St+1|St: at, 0;)

2

How to train?

Main idea: need to generate “independent’
datasets to get “independent” models

0; is trained on D;, sampled with replacement from D
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Bootstrap ensembles in deep learning

p(St+1(st, ar) This basically works

Very crude approximation, because the
number of models is usually small (< 10

aTatataTaTaYaTa' ~ NN s 2Wa aTaYeleTelatals

) At A I.- vl ) -I.I Lol (2

Resampling with replacement is usually

"N Ttas unnecessary, because SGD and random

sl Ueinn. Initialization usually makes the models
sufficiently independent

(s¢, at)




Planning with Uncertainty, Examples
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How to plan with uncertainty

Before: J(ay,...,ag) = Zil r(s¢,a;), where s;11 = f(s¢,a4)

/

Now: J(al, s ,aH) = % Zi\zl Zflzl 7’(St,i., at): where s;41; = f’i(St,iaat)

™\

. _ , distribution over
In general, for candidate action sequence aq,...,ag: deterministic models

Step 1: sample 6 ~ p(0|D)
Step 2: at each time step ¢, sample S¢11 ~ p(S¢+1|st, ay, 0)
Step 3: calculate R = ) _, r(s, a;)

Step 4: repeat steps 1 to 3 and accumulate the average reward

Other options: moment matching, more complex posterior estimation
with BNNs, etc.
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Example: model-based RL with ensembles

Deep Reinforcement Learning in a Handful of Trials
using Probabilistic Dynamics Models

exceeds performance of model-free after 40k steps
(about 10 minutes of real time)
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10° 10° 107 10t 10 107 L? (PE-TSI) (D-E) GP-E GP-DS (GP-MM) LS R CONVEIEEnce SAC o CONVErEence DDPG CONVErgence
Steps

Lecture 11 - 44





