Uncertainty in Model-Based RL
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A performance gap in model-based RL
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Why the performance gap?
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Why the performance gap?

model-based reinforcement learning version 1.5:

1. run base policy m(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — s}||*
. plan through f(s,a) to choose actions

. execute the first planned action, observe resulting state s’ (MPC)

every N steps
ot RN o Do

. append (s, a,s’) to dataset D

very tempting to go
here...




How can uncertainty estimation help?
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expected reward under high-variance prediction
is very low, even though mean is the same!
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Intuition behind uncertainty-aware RL

model-based reinforcement learning version 1.5:
1. run base policy m(a¢|s;) (e.g., random policy) to collect D = {(s,a,s’);}
learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?

plan through f(s,a) to choose actions

execute the first planned action, observe degulting state s’ (MPC)

AU

every N steps

append (s, a,s’) to dataset D

only take actions for which we think we’ll get high
reward in expectation (w.r.t. uncertain dynamics)

This avoids “exploiting” the model
The model will then adapt and get better



There are a few caveats...

Need to explore to get better

Expected value is not the same as pessimistic value

Expected value is not the same as optimistic value

...but expected value is often a good start
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Uncertainty-Aware Neural Net Models
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How can we have uncertainty-aware models?

Idea 1: use output entropy l l L/\
" . s (s fp(s2fp(sa >

Si41

Al

P(St+1(se,as)
why is this not enough?

Two types of uncertainty: o

aleatoric or statistical uncertainty
epistemic or model uncertainty

A

h is th . h o “the model is certain about the data, but we are not
what is the variance here” certain about the model”
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How can we have uncertainty-aware models?

ldea 2: estimate model uncertainty

“the model is certain about the data, but we are not certain about the model”

usually, we estimate
arg max log p(0|D) = arg max log p(D|0)

= P (Se+1]st,ar) can we instead estimate p(6|D)?

- paramcters ¢ S~

the entropy of this tells us

‘ the model uncertainty!
predict according to: <_,/ o8 s, |
/[)(St+1 |St, at, 9)p(9|p)d0 5, 08 l I o5 0 0s 1
29 ?5_-0/’ >““1
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Quick overview of Bayesian neural networks

common approximation:

p(0|D) = H p(6;|D)
( ID ,Ul Uz \
expected weight uncertainty about

the weight

For more, see:
Blundell et al., Weight Uncertainty in Neural Networks Gal et al., Concrete Dropout
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Bootstrap ensembles

p(St+1 |St: at)

N Y .’"\I 'avYavYa'

!

(s¢,at)

Train multiple models and see if they agree!

1 i
formally: p(6|D) ~ N ZO(HZ-)

2

1
p(St+1lst, at,0)p(0|D)do ~ N ZP(St+1|St: at, 0;)

2

How to train?

Main idea: need to generate “independent’
datasets to get “independent” models

0; is trained on D;, sampled with replacement from D
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Bootstrap ensembles in deep learning

p(St+1(st, ar) This basically works

Very crude approximation, because the
number of models is usually small (< 10

aTatataTaTaYaTa' ~ NN s 2Wa aTaYeleTelatals

) At A I.- vl ) -I.I Lol (2

Resampling with replacement is usually

"N Ttas unnecessary, because SGD and random

sl Ueinn. Initialization usually makes the models
sufficiently independent

(s¢, at)




Planning with Uncertainty, Examples
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How to plan with uncertainty

Before: J(ay,...,ag) = Zil r(s¢,a;), where s;11 = f(s¢,a4)

/

Now: J(al, s ,aH) = % Zi\zl Zflzl 7’(St,i., at): where s;41; = f’i(St,iaat)

™\

. _ , distribution over
In general, for candidate action sequence aq,...,ag: deterministic models

Step 1: sample 6 ~ p(0|D)
Step 2: at each time step ¢, sample S¢11 ~ p(S¢+1|st, ay, 0)
Step 3: calculate R = ) _, r(s, a;)

Step 4: repeat steps 1 to 3 and accumulate the average reward

Other options: moment matching, more complex posterior estimation
with BNNs, etc.
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Example: model-based RL with ensembles

Deep Reinforcement Learning in a Handful of Trials
using Probabilistic Dynamics Models

exceeds performance of model-free after 40k steps
(about 10 minutes of real time)
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Backpropagate directly into the policy?

backprop

backprop

easy for deterministic policies, but also possible for stochastic policy

model-based reinforcement learning version 2.0:
1. run base policy mo(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y, || f(si, a;) — s}
3. backpropagate through f(s,a) into the policy to optimize 7y (a;|s;)

4. run 7y (ay|s;), appending the visited tuples (s, a,s’) to D
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What’s the problem with backprop into policy?

1;

big gradients here small gradients here
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What’s the problem with backprop into policy?

« Similar parameter sensitivity problems as shooting methods
* But no longer have convenient second order LQR-like
method, because policy parameters couple all the time steps,

SO no dynamic programming

« Similar problems to training long RNNs with BPTT
* Vanishing and exploding gradients
* Unlike LSTM, we can’t just “choose” a simple dynamics,
dynamics are chosen by nature
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What’s the problem with backprop into policy?

* Use derivative-free (“model-free”) RL algorithms, with the model
used to generate synthetic samples

* Seems weirdly backwards
* Actually works very well
 Essentially “model-based acceleration” for model-free RL
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Model-based RL via policy gradient

model-based reinforcement learning version 2.5:
1. run base policy my(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y || f(s;,a;) — s}||?

use f(s,a) to generate trajectories {7;} with policy my(als)

use {7;} to improve my(als) via policy gradient

AN

run my(a;|s;), appending the visited tuples (s, a,s’) to D

What'’s a potential problem with this approach?
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The curse of long model-based rollouts

e = training-trajectory— run mg with true dynamics
_ Fo-expeeted—trajectory— run my with learned model

How quickly does error accumulate?

O(eT?)
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How to get away with accumulated errors?

- never see later time steps
- wrong state distribution
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Model-based RL with short rollouts

model-based reinforcement learning version 3.0:

1. run base policy my(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
learn dynamics model f(s,a) to minimize Y . || f(s;, a;) — st
pick states s; from D, use f(s,a) to make short rollouts from them

use both real and model data to improve my(a|s) with off-policy RL

S W N

run my(a;|s;), appending the visited tuples (s, a,s’) to D
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given state s, pick action a using exploration policy

/

. observe s’ and r, to get transition (s,a,s’,r)

update model p(s’|s,a) and 7(s,a) using (s, a, s’)

Q-update: Q(s,a) < Q(s,a) + aFEy .[r + max, Q(s',a’) — Q(s,a)]

. repeat K times:

1
2
3.
4.

o

6. sample (s,a) ~ B from buffer of past states and actions

7. Q-update: Q(s,a) + Q(s,a) + aFEy .[r + max, Q(s',a’) — Q(s, a)]

Richard S. Sutton. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming.
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General “Dyna-style” model-based RL recipe

1. collect some data, consisting of transitions (s, a,s’, ) S /-/

2. learn model p(s’|s,a) (and optionally, 7(s,a)) \

3. repeat K times:

4. sample s ~ B from buffer

A
5. choose action a (from B, from 7, or random) K\

6. simulate s’ ~ p(s|s,a) (and r = 7(s,a))

7. train on (s, a,s’,r) with model-free RL

8. (optional) take N more model-based steps L
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Instantiations

Model-Based Acceleration (MBA)
Model-Based Value Expansion (MVE)
Model-Based Policy Optimization (MBPO)

take some action a; and observe (s;,a;,s;,r;), add it to B
sample mini-batch {s;,a;,s’,r;} from B uniformly

use {s;,a;,s’} to update model p(s’[s,a)

sample {s;} from B
for each s;, perform model-based rollout with a = 7 (s) K
use all transitions (s, a,s’,r) along rollout to update Q-function

Gu et al. Continuous deep Q-learning with model-based acceleration. ‘16
Feinberg et al. Model-based value expansion. *18
Janner et al. When to trust your model: model-based policy optimization. ‘19

& = P T
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