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Bellman’s Optimality Equation

e Assume a stochastic reward function.
Pr(Siz1 =8, Riy1=7|St =s5,A1=a),Vs,s' €S,reR,a € A,

which is abbreviated by p(s’,r|s, a).

g«(s,a) =maxE|[G|S; = s, Ay = a

7

:maxIE:RtH + ’}/Gt_|_1|St = 8, At = a]

T

=E[R¢+1|5t = s, At =a| + ’YmQXE[GHﬂSt = s, A: = a.
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Bellman’s Optimality Equation (cont.)
E[Ri11|S: = s,A: = a] = Zer(s', r|s,a).

E[G¢+1|S: = s, Ay = a Zp s’ d'|s,a)E[Gi11|Si11 = 8, Apy1 = d', Sy = s, Ay = q

—Zp "Is,a)p(a’|s’, s,a)E[Giy1|Si41 = 8, App1 = d]

s’,a’

— Zp(s |s,a)m(a’|s")gx (", a)

s’,a’

=) p(s'ls,a) Y m(d|s)gn (s, ).



Bellman’s Optimality Equation (cont.)

a(s,a) =) ry p(s'rls,a) +ymax ) p(s'ls,a) Y m(d|s')ax(s',d").
T s’ s/ a'

g«(s,a) = E r E p(s’,r|s, a) + 7 max E p(s'|s,a) max g (s', a’).
a
T s’ s’
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Bellman’s Optimality Equation (cont.)

Y Yps r|s,a) —I—va (s']s,a) maxq*(s a’)

=Zp s’ rls,a) r—l—vmaxq*(s ,a')).
a/

r,s’
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Questions

 Does there exist g« functions satisfying the Bellman’s
Eq.?

* |s this function unique?

 (Can value iteration find this function?
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* For an operator T, we call x a fixed point if Tx = x.
* (-.is a fixed point of the Bellman’s Eq.
e Why?
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Fixed Point (cont.)

Theorem 1 (Banach Fixed Point Theorem). Suppose that X is a nonempty complete metric
space and T : X — X is a contraction mapping on X. Then T has a unique fized point.

Definition 1 (Contraction Mapping). [1] Let (X, d) be a metric space. A mapping 7 : X — X
is called a contraction mapping on X if there is a positive real number o < 1 such that for any
x,y € X

d(Tx, Ty) < ad(z,y).
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Existence Proof

* Pick an arbitrary point x,.

e (Constructa sequence: T = Txp_1, k = 1,2,....
* Let C=d(x1,x).
* Note that
d(xri1,Tr) < ad(xp, zp—1) < -+ < afd(z1,z0) = FC, ¥,k =1,2,....
m—n—1
d(xmaxn) < Z d(wn+i+17$n+i)-
S 1—a™™ C
< n+iy _ on B & S .
A By s ) S Z a"m'C = oa"C T <« T

1=0
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Existence Proof

—)~logC then d(zm,e.) <e
loga

* Thusforanye > 0,if N > el
* Hence x, is a Cauchy sequence.
 Therefore, it converges to a point, let’s call x.
* Now, we show that x is a fixed point of T.
* Note that:
dTz,z) < d(Tz,zy) +d(zg,z) < ad(x,zr_1) + d(zg,x), VE=1,2,....
d(Tz,x) =0,
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Uniqueness

* Proof by contradiction.

 Let x” be another such fixed point.

* Then, dz,z') =d(Tz,Tx") < ad(z,z’),
* Which is a contradiction.
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Application to the Bellman’s Eq.

 Define the operator T as:

Tq(s,a) = ) p(r,s'|s,a)(r +ymaxq(s',a)),
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T in Bellman is contraction

Lemma 1. For a finite MDP, the mapping T in Eq. (10) is a contraction mapping.

Proof. We consider the complete metric space (RISIXIAl d) where d(q1,q2) = ||g1 — ¢2||eo for any
p,q € RISIXIAI Then,

1Tq1 — T'q2|0o = max T'q1(s,a) — Tqa(s,a)|

=~ maxz:p(r, s'|s,a)| max qi (s, a’) — max ga(s’, ')
S,a - a a

<y 3 p(s'5,0) maxlan (5, ) - a(s', )
S
<vymaxmaxmax |q1(s’,a’) — ga(s’,a’)|
S,a S/ a/

= Ig}aajj( |Q1(3/7 a’/) - Q2(8/7 a’/)|

Y

=7|l¢1 — g2/ o)
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Why value iteration converges to the fixed point?

e Let’s discuss!

Lecture 18 - 14



Policy Improvement Improves!

* If we set the new policy to maximize q(s, a) over a, the
new policy leads to higher v(s) values for all states s.
* Let’s discuss!
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Policy Iteration Converges

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy
and its value function are the optimal policy and the optimal value function!

Proof sketch:

(1) Guarantee to converge: In every step the policy improves. This means that a given policy can be
encountered at most once. This means that after we have iterated as many times as there are different
policies, i.e., (number actions)(numberstates) \we must be done and hence have converged.

(2) Optimal at convergence: by definition of convergence, at convergence n,,,(s) = m,(s) for all states s. This
Means vs Vk(s) = maxa Yy T(s,a,8") [R(s,a,8") + V(s
Hence Vv rsatisfies the Bellman equation, which means v is equal to the optimal value function V*.
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