Computer Engineering Department

Policy-based Theoretical Guarantees

——
Mohammad Hossein Rohban, Ph.D. N’

Spring 2025 \/

Courtesy: Most of slides are adopted from tRe RL gburse at Berkeley.
o5 RgRLS® o



Recap: Policy Gradients

REINFORCE algorithm:

=) 1. sample {7'} from mg(as|s;) (run the policy)

2. VoJ(0) = ¥, (Zz;l Vg log my(al|st) (ZZ:t r(s@,a@)))

3.0« 0+ aVeJ(6)

1 N T

Vo J(0) =~ N Z Z Vo log Wg(ai,t|si,t)Qf,t

=1 t=1

“reward to go”

fit a model to
ﬁ estimate return
generate
samples (i.e.

run the policy)

(...

policy

0+ 0+ aVeJ(0)

Lecture 18 - 2



Policy Gradient as Policy Iteration

A

N T T
1 A (Xt,llt)
VoJ (0 NZZ Vo log Ty aztlszt)
i=1 t=1 ﬁta model to
ﬁ estimate return
main steps of policy gradient algorithm: " generate |
» 1. Estimate fl”(st, a;) for current policy 7 | ,::‘:ie;;;,;)

2. Use A7 (sy,a;) to get improved policy 7’

t improve the
policy
0 — 0+ OzVQJ(@)

Familiar to policy iteration algorithm:

= 1. evaluate A™(s,a)
= 2. set w7’

Lecture 18 -3



Policy Gradient as Policy Iteration

J(e) . ETNpg(T) [Z ’ytT(St, at)]

Clalm: ‘](9/)_‘]( — 7'~p /(1) [27 St at]

\

could be interpreted as policy improvement!

Lecture 18 -4



Policy Gradient as Policy Iteration

claim: J(@') — J(0) = By (1) !Z 7tA7T9 (St’at)]
t

proof: (@) — J(0) = J(0') — Esymp(se) [V™ (s0)]

= J(0) = Ernpy(r) [V (0)]

- J(el) - ETNPOI(T) Z ,thwe (St) - Z ,ytvm; (St)]
| t=0 t=1

oo

= J(0') + Erpei (1) Z 7 (YW (st41) — V7 (s¢))
t=0

= Ernp, () Z v'r(se, a)
t=0

+ Erpy () [Z Y (VT (st41) — V™ (St))]

t=0

— ETNPG/(T) Z Vt(r(sta at) 2% ,),Vﬂ'e (St+1) — Ve (St))w
L t=0

= Erepo(r) | 27 A™ (51, at)]
| 1=0

Lecture 18 -5



Policy Gradient as Policy Iteration

JO) - J(0) = E

Troper (T

/

expectation under 7y

) !Z 7 AT (s, at)]
: \

advantage under my

Breayto |0 -

t

— Z ESthef (st)
N

is it OK to use py(s;) instead?

[Eat’\'We (at|st)

Lecture 18 - 6

o Z Est ~por (St) [Eat’\”re/ (at|se) :’Y

_Wef(atlst)

importance sampling

By [f ()] = / p(2)f(2)dz
q(x)
/ e p(a)f(a)do

= xﬁxx
—/q()()f()d

= w~q(w)|: E ;f(w)}

tA™ (sq, at)H

| o (ay|st)

v AT (st at)] ]



Policy Gradient as Policy Iteration

Can we ignore distribution mismatch?

?
mor(at[se) 4 ” . { {Wef(adst) " ”
ES ~Dpr (St Eatrwrg at (St AT‘.Q S 7a ~ EStN o (St EatNT(' at [S¢ Aﬂ-e S 7a
zt: o) [ (el [W9(3t|st) ! (80,24 zt: P 5 osHEE) mo(at|st) ! (51, 2¢)
\ ' J
why do we want this to be true? A(9))
J(O) = JO)~ A(0') = ¢ <« argmaxA(0) 2. Use A™(sy,a;) to get improved policy m’

9/
is it true? and when?

po(st) is close to py(sy) when 7y is close to my

Lecture 18 -7



Bounding the distribution change

Claim: pg(sy) is close to pg/(s¢) when 7y is close to my

Simple case: assume my is a deterministic policy a; = my(s¢)

mor is close to my if mgr(ay # mo(se)|st) < €

pQ/(St) = (1 — E)tpﬁ(st) + (1 — (1 — E)t))pmistake(st) seem familiar?
\—'_l | )
probability we made no mistakes some other distribution

Por(st) — po(se)| = (1 — (1 — €)")[Pmistake (8¢) — Po(se)| < 2(1 — (1 —€)")
useful identity: (1 —¢)* > 1 — et for € € [0, 1] < 2et

not a great bound, but a bound!

Lecture 18 - 8



Bounding the distribution change

Claim: pg(s;) is close to pg:(s;) when 7y is close to my

General case: assume 7y is an arbitrary distribution

Tor is close to my if |mer(a¢]st) — mo(ae|sy)| < € for all sy

Useful lemma: if |px (x)—py (x)| = €, exists p(x, y) such that p(x) = px(x) and p(y) = py(y) and p(z =y) =1 — ¢
= px(x) “agrees” with py (y) with probability e

= 7o (as|s¢) takes a different action than mg(a;|s;) with probability at most €

por (st) — po(se)] = (1 — (1 — €)")|Pmistake(st) — pa(se)| < 2(1 — (1 —€))
< 2et

Lecture 18 -9



Bounding the objective value

Tor is close to my if |mg: (ag|s) — mg(az|s;)| < e for all s,

[por(st) — po(se)| < 2et

By (so)lf Zpef s¢)f(st) > ZP@ s¢)f(st) — [pe(st) — por(st)| max f (st)
> Epg(st)[f(st)] — 2et max f(s¢)

St
Z - [E [m/ (at|St)7tA7r9 (st at)” 5
o eper(se) | Bacmo(acls) | g (asy) ’ - O(T'rmax) or O (qnlax)

Y

o\ A+ |S
Y Eginpotsy) [anre(atlst) [ b 35 Y AT (s, ap) ” 22“0

r 7T9(at| t)

maximizing this maximizes a bound on the thing we want!

Lecture 18 - 10



Soft actor-critic

1. Q-function update

Update Q-function to evaluate current policy:

Q(s,a) < r(s,a) + Egnp,, ar~r [Q(s',a")—logm(a|s’)]

This converges to Q7

2. Update policy
Update the policy with gradient of information projection:

‘ %exp Q'n'old (S, . ))

In practice, only take one gradient step on this objective

Tnew — arg mi,n Dxkr (W,( ) |S)
T

Haarnoja, et al. Soft Actor-Critic Algorithms

3. Interact with the world, collect more data and Applications. 18

Lecture 18 - 11




Soft actor-critic

Algorithm 1 Soft Actor-Critic

Inputs: The learning rates, A, Ag, and Ay for functions mg, @, and V,
respectively; the weighting factor 7 for exponential moving average.

. Initialize parameters 0, w, 1, and .

2: for each iteration do

- ¢ (In practice, a combination of a single environment step and multiple
gradient steps is found to work best.)

[a—

4: for each environment setup do

5: a; ~ mo(ag|st)

6: St4+1 ~ Pr(St+1]5¢, ar)

7: D+ DU {(s¢,as,7(S¢,a), Se41}
8: for each gradient update step do
9: Y~ P — /\Vv«¢,Jv(1/)).

10: w — w — AgVuJo(w).

11: 0 — 60— A:VoJ:(0).

12: Y 1+ (1 —7)9).

Lecture 18 - 12



Loss functions

Ty (®) = Boprup [ 3 (Vis(81) — Eagrr, [Qo(s1,20) — log mg(arlse)]) ]
5)

1 R 2
JQ(O) — E(st,at)ND [Q (QO(Staat) — Q(Staat)) ] 3
(7)
with

A

Q(St7 at) — ’I“(St, at) + 7E8t+1fvp [Vz/;(st-i-l)] y (8)

25

Lecture 18 - 13

Jr(¢) = Es,np [DKL (M( -[st)




Soft Actor Critic

(1) = 3" Es, aiymp, [rstyar) + aH(r(-[se))]. (1)

t=0

TWQ(SU at) = T(Sta at) L5 7E8t+1'\-’p [V(St-i-l)] 9 (2)

where

V(st) = Ea,nr [Q(St,at) — log m(a|sy)] 3)

Lecture 18 - 14



Soft Policy Evaluation

Lemma 1 (Soft Policy Evaluation). Consider the soft Bell-
man backup operator T™ in Equation 2 and a mapping
Q" : Sx A — Rwith |A| < oo, and define Q1 = T™QF.
Then the sequence Q* will converge to the soft Q-value of
mas k — oo.

Lecture 18 - 15



Soft Policy Evaluation

Lemma 1 (Soft Policy Evaluation). Consider the soft Bellman backup operator T™ in Equation 2 and a mapping
Q" :S x A — Rwith |A| < oo, and define QT = T™QF. Then the sequence QF will converge to the soft Q-value of 7
as k — oo.

Proof. Define the entropy augmented reward as . (S¢, a;) = 7(sg, at) + Es,, ,~p [H (7( - |S¢+1))] and rewrite the update
rule as

Q(St7 at) — rﬂ'(sta at) a5 7Est+1’vp,at+1~’ﬂ [Q(St-i-lv at+1)] (15)
and apply the standard convergence results for policy evaluation (Sutton & Barto, 1998). The assumption |A| < oo is
required to guarantee that the entropy augmented reward is bounded. L]

Lecture 18 - 16



Soft Policy Improvement

Taew = arg 7IrrllérrllDKL (w’(. S¢)

exp (Q71 (s¢, - )) )
Z™o1d (84) '

4)

Lemma 2 (Soft Policy Improvement). Let wo1q € 11 and let
Thew De the optimizer of the minimization problem defined
in Equation 4. Then Q™ v (s;,a;) > Q7 (s, a,) for all
(st,a:) € S X Awith |A| < oo.

Lecture 18 - 17



Soft Policy Improvement

Lemma 2 (Soft Policy Improvement). Let 7wo1q € Il and let mew be the optimizer of the minimization problem defined in
Equation 4. Then Q™= (s4,a;) > Q™ (s, a;) forall (s, a;) € S X Awith |A| < .

Proof. Let myq € Il and let Q™9 and V™4 be the corresponding soft state-action value and soft state value, and let 7pey
be defined as

o (- I82) = axg min D, (v'(+[sy) || exp (Q4 (s, -) — log Z2714(s,)))

— arg glelrﬁ Irora (ﬂ-,( ) |St))' (16)

It must be the case that J_,, (Tnew( - [St)) < I (To1d( - [St)), since we can always choose mpew = To1g € I1. Hence

Ea,orpe [108 Thew (at]st) — Q@M (s, a¢) + log 271 (s¢)] < Ea,~ny [l0g To1da(at|se) — Q™' (8¢, a¢) + log Z™1 (s4)],
(17)

Lecture 18 - 18



Soft Policy Improvement

and since partition function Z™°!'4 depends only on the state, the inequality reduces to

Ea,~mpew (@7 (8¢, at) — log Thew(at|st)] = V™01 (sy). (18)

Next, consider the soft Bellman equation:

QWOld (Sta at) = T(Sta at) + ]Est+1Np [Vﬂ.md (St+1)]

< (s, a) + YEs, 1 ~p [Eatﬂwmw [Q™" (S¢41,a¢41) — log 7Tnew(at-|-1|St+1)]]

< Q™™ (s¢, ay), (19)

where we have repeatedly expanded ()¢ on the RHS by applying the soft Bellman equation and the bound in Equation 18.
Convergence to ("~ follows from Lemma 1. [

Lecture 18 - 19



Soft Policy Iteration

Theorem 1 (Soft Policy Iteration). Repeated application of soft policy evaluation and soft policy improvement to any w € 11
converges to a policy ™ such that Q™ (s¢,a;) > Q™ (s¢,a;) forall m € I and (s, a;) € S x A, assuming |A| < .

Proof. Let m; be the policy at iteration . By Lemma 2, the sequence (™ is monotonically increasing. Since ()™ is bounded
above for m € II (both the reward and entropy are bounded), the sequence converges to some 7*. We will still need to
show that 7* is indeed optimal. At convergence, it must be case that J« (7* (- |s¢)) < Jp«(7(-|s¢)) for all 7 € II, w # 7*.
Using the same iterative argument as in the proof of Lemma 2, we get Q™ (s;, a;) > Q7 (s;,a;) for all (s;,a;) € S x A,
that is, the soft value of any other policy in II is lower than that of the converged policy. Hence 7* is optimal in II. [

Lecture 18 - 20



