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Here we define:

e Action-value: Q(a) = E[r|a]
e Optimalvalue: V* = Q(a*) = max, Q(a)
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How to define UCB?

For each arm a, we estimate an upper confidence bound Ut(a),such that with high
probability, @(a) < Ui(a). l.e., with high confidence, our estimate is an upper
bound on the true arm value. The algorithm then, at each time step, selects the
action with maximum UCB.

At each time step, as long as all of the UCB bounds simultaneously hold, we're in
good shape to prove sublinear regret. Why? Let’s first do a proof-sketch so we can
get a birds-eye view of how this will go.
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Q(a*) upper-bounded by UCB

If all UCB bounds hold, then no matter what action, a;, we take, we have that
Ut(at) > Q(a*). That is,the UCB of whatever action the algorithm takes is an
upper bound on the optimal action. There are two cases.

Case 1:a; = a*

The action we select is actually the optimal action. Then

Ut(at) = Ut(a*) b Q(CL*)
Case 2: a; # a*

Then Ui(at) > Ui(a*) > Q(a*).
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Hence Regret is upper-bounded

To see how this is relevant, let’s look at the outline of the regret proof.

T

regret(UCB, T) = Z(Q(a*) — Q(ar))
— Z U(at) — Q(at) + Q(a™) — Ur(ar)
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We have the inequality on the third line because the simultaneous UCB bounds give
us Q(a*) — Ut(at) < 0.0ur estimate of U(a:) will be of the form

Ui(at) = Q(at) + dwhere 3. dy will be a sublinear term. Ok, now onto the
details.
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How to bound Q(a;)

Chernoff-Hoeffding Bound

Let Xy,..., X, bei.id.random variables in [0, 1] and let
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the sample mean. Then

PIE[X] > X, + u] < exp(—2nu?)

In our interpretation, we let

PQ(as) > O(ar) +u] < exp(—2tu?) = t%

Where ¢ is a parameter and ¢ is the current timestep and n(at) is action selection

0
count. We'll see later why setting the bound to be ) is useful.

Lecture 18 - 6



Rewriting the Bound

We use the Chernoff-Hoeffding equation to derive the design of the estimate U(ay).
Solving for u, we get,

u = \/n(tzt) log(t2/4)

So setting Ui(at) = Q(at) + \/
with probability at least 1 — -5
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All Bounds hold all the time

The assumption we make for our sublinear regret bound to hold is that the
Chernoff-Hoeffding Bounds hold for all arms at all time steps. Let’s formally derive
this quantity by looking at the probability of failure, i.e. the probability that at some
timestep the bound for some arm is incorrect.

UPr@Q(@) > Uia) < YU Pr(@(e) - G(ar) > )
=8
<UUz
< 2md
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All Bounds hold all the time

2 e

For the last inequality we used Z;’il = 3 < 2,which puts our analysis in

the infinite horizon case.

Showing that the Chernoff bound gives us simultaneous success with probability at
least 1 — 2mé.
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Deriving Regret

regret(UCB,T) = Y (Q(a*) — Q(at))

Ui(at) — Q(at) + Q(a*) — U(ar)
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Deriving Regret

w.p. at least 1 — 2md.
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