Computer Engineering Department

Exploration in RL

Mohammad Hossein Rohban, Ph.D. N’

Spring 2025 \/

Courtesy:.-Most of slides are adopted from CS 286, UC Berkeley.
N n\}g N’

What's the problem?

this is easy (mostly) this is impossible

Lecture 18 - 2

Montezuma’s revenge

* Getting key = reward
e Opening door = reward
* Getting killed by skull = nothing (is it good? bad?)

* Finishing the game only weakly correlates with
rewarding events

e We know what to do because we understand what
these sprites mean!

Lecture 18 -3

Why exploration can be difficult?

* Temporally extended tasks like Montezuma’s revenge become
increasingly difficult based on
* How extended the task is
* How little you know about the rules

* Lets’ assume a complex task
* Consisting of multiple sub-task, each is a prerequisite for the next sub-task.
e Each should be solved in a sequence to get a high reward
* Epsilon greedy does not obviously help:
« Suppose you mastered up to the k" sub-task.
* You have to exploit up to the kt" task and then explore onwards.
« Now the chance to only explore in the sub-task (k+1) is (1 — £)2() g0(1),
* Foreps=0.1, k=5, thisis ~ 6%. For eps = 0.5, this is ~ 3%.

Lecture 18 -4

Exploration and exploitation

 Two potential definitions of exploration problem:
* How can an agent discover high-reward strategies that require
a temporally extended sequence of complex behaviors that,
individually, are not rewarding?
* How can an agent decide whether to attempt new behaviors
(to discover ones with higher reward) or continue to do the
best thing it knows so far?

Lecture 18 -5

Optimal Exploration?

e Bayesian model of the environment. (POMDP with belief state)
* Optimize the expected reward under all uncertainties.

* Requires knowledge of state dynamic distribution class, the prior, and
maintaining the belief state.

* Here we seek simpler solutions which could be extended to more complex
scenarios.

 Compare the regret in such models against the Bayes’ optimal approach.
T

Reg(T) = TE[r(a*)] = Y r(as)

=1
expected reward of best action / \

(the best we can hope for in expectation) actual reward of action
actually taken

Lecture 18 - 6

Bandits

assume 7(a;) ~ pe, (i) * solving the POMDP vyields the
e.g. p(ri = 1) = 6; and p(r; = 0) = 1 — 6, optimal exploration strategy
* but that’s overkill: belief state is

0; ~ p(#), but otherwise unknown

huge!

this defines a POMDP with s = [01, ..., 0, * we can do very well with much

belief state is p(61,...,6,) simpler strategies

how do we measure goodness of exploration algorithm?

regret: difference from optimal policy at time step T: Reg(T) = TE[r(a”)] — Z r(at)

=1
expected reward of best action / N\
(the best we can hope for in expectation) actual reward of action
actually taken

Lecture 18 -7

Optimistic exploration

keep track of average reward /i, for each action a

exploitation: pick a = arg max fi,

optimistic estimate: a = argmax i, + Coy,

some sort of variance estimate

intuition: try each arm until you are sure it’s not great

example (Auer et al. Finite-time analysis of the multiarmed bandit problem):

2InT number of times we
N(CL) «— DPicked this action

a = arg max jl, +

Reg(T) is O(logT), provably as good as any algorithm

Lecture 18 - 8

Probability matching/posterior sampling

assume 1(a;) ~ pg, (T;)

* This is called posterior

this defines a POMDP with s = [04,...,0,] sampling or Thompson

belief state is p(61,...,60,) sampling
this is a model of our bandit * Harder to analyze theoretically
> idea: sample 01, ...,0, ~ p(61,...,0,) * Can work very well empirically
pretend the model 04, ...,0,, is correct * See: Chapelle & Li, “An

Empirical Evaluation of

take the optimal action .
Thompson Sampling.

== update the model

Lecture 18 -9

Information gain

Bayesian experimental design:

say we want to determine some latent variable z (e.g., z might be the optimal action, or its value)
which action do we take?

let H(p(z)) be the current entropy of our z estimate

let H(p(z)|y) be the entropy of our z estimate after observation y (e.g., y might be r(a))

the lower the entropy, the more precisely we know 2z

IG(z,y) = Ey[H(p(2)) — H(p(2)|y)]

typically depends on action, so we have 1G(z, y|a)

Lecture 18 - 10

Information gain example
IG(z,yla) = Ey[H(p(2)) — H(p(2)|y)|a]

how much we learn about z from action a, given current beliefs

Example bandit algorithm:
Russo & Van Roy “Learning to Optimize via Information-Directed Sampling”

Yy =ry, 2z =0, (parameters of model p(r,))
g(a) =1G(0,,7,|a) — information gain of a

A(a) = Elr(a*) — r(a)] — expected suboptimality of a

2 .
A (a) ¢ don’t take actions that you’re
sure are suboptimal

choose a according to argmin

& g(a)\

don’t bother taking actions if

you won’t learn anything
Lecture 18 - 11

General themes

UCB: Thompson sampling: Info gain:

2InT 917"'79nNﬁ(917°'°79n)

IG(z,yla
N(a) a = arg max Ey |r(a)] (% 314)

a = arg max i, +

* Most exploration strategies require some kind of
uncertainty estimation (even if it’s naive)

e Usually assumes some value to new information
e Assume unknown = good (optimism)
* Assume sample = truth
e Assume information gain = good

Lecture 18 - 12

Optimistic exploration in RL

2InT

UCB: a = arg max g + N(a)

“exploration bonus”
lots of functions work, so long as they decrease with N(a)

can we use this idea with MDPs?

count-based exploration: use N(s,a) or N(s) to add exploration bonus

use 71 (s,a) = r(s,a) + B(N(s))
AN

bonus that decreases with N (s)

use r (s, a) instead of r(s,a) with any model-free algorithm

- need to tune bonus weight

Lecture 18 - 13

The trouble with counts

use r*(s,a) =r(s,a) + B(N(s))

But wait... what’s a count?

Uh oh... we never see the same thing twice!

But some states are more similar than others

Lecture 18 - 14

Fitting generative models
idea: fit a density model py(s) (or py(s,a))

po(s) might be high even for a new s
if s is similar to previously seen states

can we use py(s) to get a “pseudo-count”?

if we have small MDPs

. after we see s, we have:
the true probability is:

count
P(s) = N;Ls) — P'(s) = NT(LS—)i——Il— 1

/ S

total states visited

probability /density

Lecture 18 - 15

Exploring with pseudo-counts

= fit model py(s) to all states D seen so far
take a step ¢ and observe s;

fit new model pg/(s) to DUs;
use pg(s;) and pg:(s;) to estimate N (s)

G set 7 =7 + B(N(8)) —0 .

pseudo-count”

how to get N (s)? use the equations

A

N (s;) _ N(s;) +1
po(si) = — por(si) = P
two equations and two unknowns!
-) 1 — por(s;)
N(s;) = npy(s; n = Po(S;
(8:) = iy (s:) por (8i) — po(si) (5:)

Bellemare et al. “Unifying Count-Based Exploration...”

Lecture 18 - 16

What kind of generative modeling to use?

...0

po(s)
need to be able to output densities, but doesn’t

necessarily need to produce great samples

opposite considerations from many popular
generative models in the literature (e.g., GANs)

Bellemare et al.: “CTS” model:
condition each pixel on its top- <
left neighborhood

Other models: stochastic neural
networks, compression length, EX2

Lecture 18 - 17

Does it work?

MONTEZUMA'’S REVENGE FREEWAY VENTURE H.E.R.O.
7000 . 450 25000
; 6000 — DQN 400+
E = optimistic 350} 0000
: 5000t . 1/ 300}
z o 4000 2501 2000
—
S 3000 2001 10000
2000 e | P
100} 2252 5000
1000 2ol S
0 0 = 0
0 20 40 60 80 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 10
Training frames (millions)
No bonus With bonus

Bellemare et al. “Unifying Count-Based Exploration...”

Lecture 18 - 18

Counting with hashes

What if we still count states, but in a different space?

idea: compress s into a k-bit code via ¢(s), then count N(¢(s))

shorter codes = more hash collisions

similar states get the same hash? maybe

improve the odds by learning a compression:

. downsample '

6/x6 Hx6 Ax6 f6x 6 Hix 6

b(-)
N 512 9% x5x35
96 x 11 x 11 ‘ Y
U 96x24x24 1024 oy

9% x5x5

96 x 10x 10

1x52x%x52

Tang et al. “#Exploration: A Study of Count-Based Exploration”

Lecture 18 - 19

O

|
d
X 6

linear softmax

96 x 24 x24

I xX52x52 64x52x%x52

(a) Freeway (b) Frostbite

00000

(¢) Gravitar

(d) Montezuma'’s Revenge (e) Solaris

(f) Venture

Implicit density modeling with exemplar models

(S) need to be able to output densities, but doesn’t
Pe necessarily need to produce great samples

Can we explicitly compare the new state to past states?

Intuition: the state is novel if it is easy to distinguish from all
previous seen states by a classifier

for each observed state s, fit a classifier to classify that state against all past
states D, use classifier error to obtain density

probability that classifier assigns that s is “positive”

— 1 o DS(S) N positives: {s}
DS(S) negatives: D

po(s)

Fu et al. “EX2: Exploration with Exemplar Models...”

Lecture 18 - 20

Implicit density modeling with exemplar models

D, = arg max (Es_. [log D(x)] + Ep,|logl — D(z)]) . (1)
DeD

Proposition 1. (Optimal Discriminator) For a discrete distribution Px (x), the optimal discriminator
D~ for exemplar x™* satisfies

Oz () Ky _ 1
6z () + Py (x) and Dz (7) = 1+ Px(z*)

D« (x) =

Proof. The proof is obtained by taking the derivative of the loss in Eq. @ with respect to D(z),
setting it to zero, and solving for D(x).]

Lecture 18 - 21

Implicit density modeling with exemplar models

hang on... aren’t we just checking if s = s?

if s € D, then the optimal Dg(s) # 1

1
~ 1+p(s)

in fact: DZ(s)

in reality, each state is unique, so we reqularize the classifier

isn’t one classifier per state a bit much?

train one amortized model: single network that takes in exemplar as input!

|
|2
’X} lEncoder‘ H
Fu et al. “EX2: Exploration with Exemplar Models...”

Lecture 18 - 22

‘ b i Encoder} ’r

Figure 9: DoomMyWayHome+

Heuristic estimation of counts via errors

(S) need to be able to output densities, but doesn’t
Pe necessarily need to produce great samples

...and doesn’t even need to output great densities

...just need to tell if state is novel or not!
let’s say we have some target function f*(s,a)

low novelty

given our buffer D = {(s;,a;)}, fit fo(s,a)

use £(s,a) = || fo(s,a) — f*(s,a)||? as bonus b I\

high novelty

-
»

Lecture 18 - 23

Heuristic estimation of counts via errors

what should we use for f*(s,a)?

one common choice: set f*(s,a) =s’ — i.e., next state prediction

even simpler: f*(s,a) = f(s,a), where ¢ is a random parameter vector

Burda et al. Exploration by random network distillation. 2018.

Lecture 18 - 24

Posterior sampling in deep RL

Thompson sampling:

01,..., 0, ~p(61,...,0,)
a = arg max Ey,_[r(a)] How do we represent the distribution?

What do we sample?

bandit setting: p(f4,...,60,) is distribution over rewards
MDP analog is the Q)-function!

= 1. sample Q-function @ from p(Q) since Q-learning is off-policy, we don’t care
which Q-function was used to collect data

2. act according to () for one episode
‘3. update p(Q) ¢

how can we represent a distribution over functions?

Osband et al. “Deep Exploration via Bootstrapped DQN”

Lecture 18 - 25

Bootstrap

given a dataset D, resample with replacement N times to get D1,...,Dy

train each model fy. on D;

to sample from p(#), sample ¢ € [1,..., N| and use foy,

training N big neural nets is expensive, can we avoid it?

Shared network

Osband et al. “Deep Exploration via Bootstrapped DQN”

Lecture 18 - 26

Bootstrap

Algorithm 1 Bootstrapped DQN

1: Input: Value function networks Q with K outputs {Qx}_,. Masking distribution M.
2: Let B be a replay buffer storing experience for training.
3: for each episode do

4: Obtain initial state from environment sg
B Pick a value function to act using k ~ Uniform{1,..., K}
6: for step t = 1,... until end of episode do
7 Pick an action according to a; € arg max, Qx(st,a)
8: Receive state s;11 and reward r; from environment, having taking action a;
9: Sample bootstrap mask m; ~ M
10: Add (s, a¢,7441,8¢41, ms) to replay buffer B
11: end for
12: end for

Osband et al. “Deep Exploration via Bootstrapped DQN”

Why does this work?

Exploring with random actions (e.g., epsilon-greedy): oscillate
back and forth, might not go to a coherent or interesting place

Exploring with random Q-functions: commit to a randomized
but internally consistent strategy for an entire episode

L
<2 200
o
2 100
=%
L 0-
b ¥
£ ' ' | | | ' .
=% O le+08 De+08 Oe+00 le408 2¢+08 Oe+00 le+08 2¢+08 /\Ignrllhm
2 — Bootstrapped DQN
8 James Bond Montezuma's Revenge Qbert — DQN
g = o
50 - 15000 - - e

) - . ———
50 . : ‘
g 1000- g 0 : -ver 00 onuses orten ao pettier
o GNe 20 10000 - ’
< 5 o

500 - , 20

00 - 5000 -

o 10 - .
0- 0- pe=m 0-
) [! | ‘ | |)
Oe+00 le+08 2e+08 Oe+00 le+08 2e+08 0e+00 le+08 2e+08

Total training frames

Osband et al. “Deep Exploration via Bootstrapped DQN”

Lecture 18 -

28

