Reinforcement Learning Computer Engineering Department Sharif University of Technology

Mohammad Hossein Rohban, Ph.D.

Spring 2025

Courtesy: Some slides are adopted from CS 285 Berkeley, and CS 234 Stanford, and Pieter Abbeel's compact series on RL.

Motivation (cont.) ChatGPT; Why RL?!

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler

behavior.

demonstrates the desired output

This data is used to fine-tune GPT-3.5 with supervised learning.

()

Explain reinforcement

learning to a 6 year old.

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

This data is used to train our reward model.

outputs from best

to worst.

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from the dataset.

The PPO model is initialized from the supervised policy.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Courtesy: OpenAl Blog

Large-scale Reasoning-Oriented Reinforcement Learning

Solution score (reward)

Motivation (cont.)

SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training

First, turn slightly right towards the northeast and walk a short distance until you reach the next intersection, where you'll see The Dutch on your right. Next, make a sharp left turn to head northwest. Continue for a while until you reach the next intersection, where Lola Taverna will be on your right. Finally, turn slightly right to face northeast and walk a short distance until you reach your destination, Shuka, which will be on your right.

History

2013

Atari (DQN) [Deepmind]

Pong

Enduro

Beamrider

Q*bert

2013

Atari (DQN) [Deepmind]

2014

2D locomotion (TRPO) [Berkeley]

History

2013 Atari (DQN)
[Deepmind]
2014 2D locomotion (TRPO)
[Berkeley]
2015 AlphaGo
[Deepmind]

Tian et al, 2016; Maddison et al, 2014; Clark et al, 2015

2013 Atari (DQN) [Deepmind]

2014 2D locomotion (TRPO)

[Berkeley]

2015 AlphaGo [Deepmind]

2016 3D locomotion (TRPO+GAE)

[Berkeley]

[Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

2016	Real Robot Manipulation (GPS) [Berkeley]
2016	3D locomotion (TRPO+GAE) [Berkeley]
2015	AlphaGo [Deepmind]
2014	2D locomotion (TRPO) [Berkeley]
2013	Atari (DQN) [Deepmind]

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

History

2017	Dota2 (PPO) [OpenAl]
2016	Real Robot Manipulation (GPS) [Berkeley, Google]
2016	3D locomotion (TRPO+GAE) [Berkeley]
2015	AlphaGo [Deepmind]
2014	2D locomotion (TRPO) [Berkeley]
2013	Atari (DQN) [Deepmind]

OpenAl Dota Bot beat best humans 1:1 (Aug 2018)

2013	Atari (DQN) [Deepmind]
2014	2D locomotion (TRPO) [Berkeley]
2015	AlphaGo [Deepmind]
2016	3D locomotion (TRPO+GAE) [Berkeley]
2016	Real Robot Manipulation (GPS) [Berkeley, Google]
2017	Dota2 (PPO) [OpenAl]
2018	DeepMimic [Berkeley]

[Peng, Abbeel, Levine, van de Panne, 2018]

History

2013	Atari (DQN) [Deepmind]
2014	2D locomotion (TRPO) [Berkeley]
2015	AlphaGo [Deepmind]
2016	3D locomotion (TRPO+GAE) [Berkeley]
2016	Real Robot Manipulation (GPS) [Berkeley, Google]
2017	Dota2 (PPO) [OpenAl]
2018	DeepMimic [Berkeley]
2019	AlphaStar [Deepmind]
2019	Rubik's Cube (PPO+DR) [OpenAl]

Let's Begin: Markov Decision Processes (MDPs)

An MDP is defined by:

- Set of states S
- Set of actions A
- Transition function P(s' | s, a)
- Reward function R(s, a, s')
- Start state s₀
- Discount factor γ
- Horizon H

The Goal

• The policy is $\pi_{\theta}: S \to A$ for infinite horizon or

 $\pi_{\theta}: S \times \{0, ..., H\} \rightarrow A$ for finite horizon MDP.

MDP (S, A, T, R, γ , H),

goal:
$$\max_{\pi} \mathbb{E}[\sum_{t=0}^{H} \gamma^t R(S_t, A_t, S_{t+1}) | \pi]$$

Sometimes the policy could be stochastic: $\pi: S \times A \rightarrow [0,1]$, which is

$$\pi(a|s) = \Pr(A_t = a|S_t = s).$$

Example: Grid World

An MDP is defined by:

- Set of states S
- Set of actions A
- Transition function P(s' | s, a)
- Reward function R(s, a, s')
- Start state s₀
- Discount factor γ
- Horizon H

Goal: $\max_{\pi} \operatorname{E}[\sum_{t=0}^{H} \gamma^{t} R(S_{t}, A_{t}, S_{t+1}) | \pi]$

 π :

Exercise

- (a) Prefer the close exit (+1), risking the cliff (-10)
- (b) Prefer the close exit (+1), but avoiding the cliff (-10)
- (c) Prefer the distant exit (+10), risking the cliff (-10)
- (d) Prefer the distant exit (+10), avoiding the cliff (-10)

(1)
$$\gamma$$
 = 0.1, noise = 0.5

(2)
$$\gamma = 0.99$$
, noise = 0

(3)
$$\gamma = 0.99$$
, noise = 0.5

(4)
$$\gamma = 0.1$$
, noise = 0

Graphical Model of MDPs

Partially Observable MDPs (POMDPs)

• Often times the state S_t is hidden from the agent, and only noisy or incomplete measurement of it is available O_t.

Policy as a function of S_t or O_t

 \mathbf{s}_t – state

 \mathbf{o}_t – observation

 \mathbf{a}_t – action

$$\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$$
 – policy

$$\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$$
 – policy (fully observed)

MDP (S, A, T, R, γ , H),

goal:
$$\max_{\pi} \mathbb{E}[\sum_{t=0}^{H} \gamma^t R(S_t, A_t, S_{t+1}) | \pi]$$

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

= sum of discounted rewards when starting from state s and acting optimally

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

= sum of discounted rewards when starting from state s and acting optimally

Let's assume:

actions deterministically successful, gamma = 1, H = 100

$$V*(4,3) =$$

$$V*(3,3) =$$

$$V*(2,3) =$$

$$V*(1,1) =$$

$$V*(4.2) =$$

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

= sum of discounted rewards when starting from state s and acting optimally

Let's assume:

actions deterministically successful, gamma = 0.9, H = 100

$$V*(4,3) =$$

$$V*(3,3) =$$

$$V^*(2,3) =$$

$$V*(1,1) =$$

$$V*(4,2) =$$

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

= sum of discounted rewards when starting from state s and acting optimally

Let's assume:

actions successful w/probability 0.8, gamma = 0.9, H = 100

$$V*(4,3) =$$

$$V*(2,3) =$$

$$V*(1,1) =$$