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What’s the problem?

this is easy (mostly) this is impossible

Why?
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Montezuma’s revenge

• Getting key = reward
• Opening door = reward
• Getting killed by skull = nothing (is it good? bad?)
• Finishing the game only weakly correlates with 

rewarding events
• We know what to do because we understand what 

these sprites mean!
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Why exploration can be difficult?
• Temporally extended tasks like Montezuma’s revenge become 

increasingly difficult based on
• How extended the task is
• How little you know about the rules 

• Lets’ assume a complex task
• Consisting of multiple sub-task, each is a prerequisite for the next sub-task.
• Each should be solved in a sequence to get a high reward
• Epsilon greedy does not obviously help: 
• Suppose you mastered up to the kth sub-task.
• You have to exploit up to the kth task and then explore onwards.
• Now the chance to only explore in the sub-task (k+1) is 1 − 𝜀 !(#)𝜀!(%).
• For eps = 0.1, k = 5, this is ~ 6%. For eps = 0.5, this is ~ 3%. 
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Exploration and exploitation

• Two potential definitions of exploration problem:
• How can an agent discover high-reward strategies that require 

a temporally extended sequence of complex behaviors that, 
individually, are not rewarding? 

• How can an agent decide whether to attempt new behaviors
(to discover ones with higher reward) or continue to do the 
best thing it knows so far? 
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Optimal Exploration?
• Bayesian model of the environment. (POMDP with belief state)
• Optimize the expected reward under all uncertainties. 
• Requires knowledge of state dynamic distribution class, the prior, and 

maintaining the belief state.
• Here we seek simpler solutions which could be extended to more complex

scenarios. 
• Compare the regret in such models against the Bayes’ optimal approach.
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Bandits
• solving the POMDP yields the 

optimal exploration strategy
• but that’s overkill: belief state is 

huge!
• we can do very well with much 

simpler strategies
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Optimistic exploration
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Probability matching/posterior sampling

• This is called posterior 
sampling or Thompson 
sampling
• Harder to analyze theoretically
• Can work very well empirically
• See: Chapelle & Li, “An 

Empirical Evaluation of 
Thompson Sampling.”
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Information gain
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Information gain example
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General themes

• Most exploration strategies require some kind of 
uncertainty estimation (even if it’s naïve)
• Usually assumes some value to new information
• Assume unknown = good (optimism)
• Assume sample = truth
• Assume information gain = good
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Optimistic exploration in RL
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The trouble with counts
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Fitting generative models
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Exploring with pseudo-counts
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What kind of generative modeling to use? 
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Does it work?
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Counting with hashes
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Implicit density modeling with exemplar models
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Implicit density modeling with exemplar models
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Implicit density modeling with exemplar models
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Heuristic estimation of counts via errors
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Heuristic estimation of counts via errors
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Posterior sampling in deep RL
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Bootstrap
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Bootstrap
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Why does this work?
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Go-Explore Method



Lecture 18 - 30

Go-Explore Method

Sparse Rewards: Requires a lot of exploration; 
e.g. task: reaching coffee machine.
define reward as whether or not the machine has been reached.  

Dense Rewards:
e.g. define reward as the inverse Euclidean distance to the machine. 
• Deceptive
• Reward Hacking
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Solving two major issues

Solves two issue:
Detachment: the algorithm loses track of previously seen and promising states
Derailment: exploratory mechanisms of the policy prevents it from reaching 

previously visited states
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State Archive
- Builds an archive of the different states visited in the environment.
- Probabilistically selects a state to return to from the archive.
- Goes back (i.e. returns) to that state, then explores from that state.
- Updates the archive with all novel states encountered 
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How to build archive
Non-trivial environments have too many states to store explicitly. 
Similar states are grouped into cells.
States are only considered novel if they are in a cell that does not yet exist in the 
archive.

To maximize performance, if a state maps to an already known cell, but is 
associated with a better trajectory, that state and its associated trajectory will 
replace the state and trajectory currently associated with that cell.
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How to return to a state?
The inner state of any simulator can be saved and restored at a later time, 
making it possible to instantly return to a previously seen state. 

Else, one can train a goal-conditioned policy for this purpose. 

However, returning without a policy also means that this exploration process, 
which we call the exploration phase, does not produce a policy robust to the 
inherent stochasticity of the real world.

After the exploration phase is complete, these trajectories make it possible to 
train a robust and high-performing policy by Learning from Demonstrations (LfD).
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How to return to a state?



Lecture 18 - 36

All in one view
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Results
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Results


