
Lecture 18 - 1

Computer Engineering Department

Mohammad Hossein Rohban, Ph.D.

Spring 2025
Courtesy: Most of slides are adopted from CS 285, UC Berkeley.

Exploration in RL

Lecture 18 - 2

What’s the problem?

this is easy (mostly) this is impossible

Why?

Lecture 18 - 3

Montezuma’s revenge

• Getting key = reward
• Opening door = reward
• Getting killed by skull = nothing (is it good? bad?)
• Finishing the game only weakly correlates with

rewarding events
• We know what to do because we understand what

these sprites mean!

Lecture 18 - 4

Why exploration can be difficult?
• Temporally extended tasks like Montezuma’s revenge become

increasingly difficult based on
• How extended the task is
• How little you know about the rules

• Lets’ assume a complex task
• Consisting of multiple sub-task, each is a prerequisite for the next sub-task.
• Each should be solved in a sequence to get a high reward
• Epsilon greedy does not obviously help:
• Suppose you mastered up to the kth sub-task.
• You have to exploit up to the kth task and then explore onwards.
• Now the chance to only explore in the sub-task (k+1) is 1 − 𝜀 !(#)𝜀!(%).
• For eps = 0.1, k = 5, this is ~ 6%. For eps = 0.5, this is ~ 3%.

Lecture 18 - 5

Exploration and exploitation

• Two potential definitions of exploration problem:
• How can an agent discover high-reward strategies that require

a temporally extended sequence of complex behaviors that,
individually, are not rewarding?

• How can an agent decide whether to attempt new behaviors
(to discover ones with higher reward) or continue to do the
best thing it knows so far?

Lecture 18 - 6

Optimal Exploration?
• Bayesian model of the environment. (POMDP with belief state)
• Optimize the expected reward under all uncertainties.
• Requires knowledge of state dynamic distribution class, the prior, and

maintaining the belief state.
• Here we seek simpler solutions which could be extended to more complex

scenarios.
• Compare the regret in such models against the Bayes’ optimal approach.

Lecture 18 - 7

Bandits
• solving the POMDP yields the

optimal exploration strategy
• but that’s overkill: belief state is

huge!
• we can do very well with much

simpler strategies

Lecture 18 - 8

Optimistic exploration

Lecture 18 - 9

Probability matching/posterior sampling

• This is called posterior
sampling or Thompson
sampling
• Harder to analyze theoretically
• Can work very well empirically
• See: Chapelle & Li, “An

Empirical Evaluation of
Thompson Sampling.”

Lecture 18 - 10

Information gain

Lecture 18 - 11

Information gain example

Lecture 18 - 12

General themes

• Most exploration strategies require some kind of
uncertainty estimation (even if it’s naïve)
• Usually assumes some value to new information
• Assume unknown = good (optimism)
• Assume sample = truth
• Assume information gain = good

Lecture 18 - 13

Optimistic exploration in RL

Lecture 18 - 14

The trouble with counts

Lecture 18 - 15

Fitting generative models

Lecture 18 - 16

Exploring with pseudo-counts

Lecture 18 - 17

What kind of generative modeling to use?

Lecture 18 - 18

Does it work?

Lecture 18 - 19

Counting with hashes

Lecture 18 - 20

Implicit density modeling with exemplar models

Lecture 18 - 21

Implicit density modeling with exemplar models

Lecture 18 - 22

Implicit density modeling with exemplar models

Lecture 18 - 23

Heuristic estimation of counts via errors

Lecture 18 - 24

Heuristic estimation of counts via errors

Lecture 18 - 25

Posterior sampling in deep RL

Lecture 18 - 26

Bootstrap

Lecture 18 - 27

Bootstrap

Lecture 18 - 28

Why does this work?

Lecture 18 - 29

Go-Explore Method

Lecture 18 - 30

Go-Explore Method

Sparse Rewards: Requires a lot of exploration;
e.g. task: reaching coffee machine.
define reward as whether or not the machine has been reached.

Dense Rewards:
e.g. define reward as the inverse Euclidean distance to the machine.
• Deceptive
• Reward Hacking

Lecture 18 - 31

Solving two major issues

Solves two issue:
Detachment: the algorithm loses track of previously seen and promising states
Derailment: exploratory mechanisms of the policy prevents it from reaching

previously visited states

Lecture 18 - 32

State Archive
- Builds an archive of the different states visited in the environment.
- Probabilistically selects a state to return to from the archive.
- Goes back (i.e. returns) to that state, then explores from that state.
- Updates the archive with all novel states encountered

Lecture 18 - 33

How to build archive
Non-trivial environments have too many states to store explicitly.
Similar states are grouped into cells.
States are only considered novel if they are in a cell that does not yet exist in the
archive.

To maximize performance, if a state maps to an already known cell, but is
associated with a better trajectory, that state and its associated trajectory will
replace the state and trajectory currently associated with that cell.

Lecture 18 - 34

How to return to a state?
The inner state of any simulator can be saved and restored at a later time,
making it possible to instantly return to a previously seen state.

Else, one can train a goal-conditioned policy for this purpose.

However, returning without a policy also means that this exploration process,
which we call the exploration phase, does not produce a policy robust to the
inherent stochasticity of the real world.

After the exploration phase is complete, these trajectories make it possible to
train a robust and high-performing policy by Learning from Demonstrations (LfD).

Lecture 18 - 35

How to return to a state?

Lecture 18 - 36

All in one view

Lecture 18 - 37

Results

Lecture 18 - 38

Results

