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So far in the course ...

Reinforcement Learning: Learning policies guided by sparse rewards, e.g., win the game.

e Good: simple, cheap form of supervision
e Bad: High sample complexity

Where is it successful so far?

e Insimulation, where we can afford a lot of trials, easy to parallelize
e Not in robotic systems:

O action execution takes long
O we cannot afford to fail
O safety concerns

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010
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Reward shaping

Ideally we want dense in time rewards to guide the agent closely along the way.
Who will supply those shaped rewards?

1. We will manually design them: “cost function design by hand remains one of the "black

arts’ of mobile robotics, and has been applied to untold numbers of robotic systems”

2. We will learn them from demonstrations: “rather than having a human expert tune a
system to achieve desired behavior, the expert can demonstrate desired behavior and

the robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010
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Imitation Learning: Learning from demonstrations

Given: demonstrations or demonstrator

Goal: train a policy to mimic demonstrations

General Imitation Learning:

argglin IESNP(Sl’/T()) [‘C (71’*(8), 7T9(S))]

» State distribution P(s|mg) depends on rollout
determined by current policy 7y

Image: An Algorithmic Perspective on Imitation Learning, Osa et al. 2018
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Figure 3.1: Control diagram of a robotic system with imitation learning. An ex-
pert demonstrates the desired behavior generating a dataset D). Based on D and
observations about the current context and system state an upper-level controller
generates the desired trajectory 7¢. A lower-level feedback controller tries to follow
79 using observation feedback to generate a control u which causes a change to
the system state & and a new observation. In imitation learning, the controllers are
tuned to imitate the expert demonstrations.



Use cases

Imitation learning is useful when it is easier for the expert to demonstrate the desired

behavior rather than:

e coming up with a reward function that would generate such behavior

e coding up with the desired policy directly, and the sample complexity is manageable

vs. Supervised Learning vs. Offline Reinforcement Learning
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Examples & demos

Baxterrobot

Tracking camera

Turn table
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Examples & demos

Our Prediction

A Deep Learning Approach for Generalized Speech Animation, Taylor et al., SIGGRAPH 2017
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Imitation Learning methods

Two broad approaches:

e Direct: Supervised training of policy (mapping states to actions) using the
demonstration trajectories as groundtruth (a.k.a. behavior cloning)

® Indirect: Learn the unknown reward function/goal of the teacher, and derive the

policy from these, a.k.a. Inverse Reinforcement Learning

A Deep Learning Approach for Generalized Speech Animation, Taylor et al., SIGGRAPH 2017
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Direct Imitation Learning »
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training supervised

| : 770(31 |0t)
S earning

Images: Bojarski et al. ‘16, NVIDIA
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» State distribution P* provided by expert

» Reduces to supervised learning problem

Algorithm 1 Abstract of behavioral cloning

Collect a set of trajectories demonstrated by the expert D
Select a policy representation g

Select an objective function £

Optimize £ w.r.t. the policy parameter 6 using D
return optimized policy parameters 6

Images: Bojarski et al. ‘16, NVIDIA
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ALVINN: An Autonomous Land Vehicle In a Neural Network

Road Intensity 45 Direction
Feedback Unit Output Units

Real Road Image Simulated Road Image

Figure 2: Real and simulated road images Figure 3: NAVLAB, the CMU autonomous navigation test vehicle.

After 40 epochs of training on the 1200 simulated road snapshots, the network correctly
dictates a tum curvature within two units of the correct answer approximately 90%
of the time on novel simulated road images. The primary testing of the ALVINN’s
performance has been conducted on the NAVLAB (See Figure 3). The NAVLAB is
a modified Chevy van equipped with 3 Sun computers, a Warp, a video camera, and
a laser range finder, which serves as a testbed for the CMU autonomous land vehicle
project [Thorpe et al., 1987). Performance of the network to date is comparable to that
achieved by the best traditional vision-based autonomous navigation algorithm at CMU
under the limited conditions tested. Specifically, the network can accurately drive the
NAVLAB at a speed of 1/2 meter per second along a 400 meter path through a wooded

8x32 Range Finder
Input Retina

30x32 Video
Input Retina

Figure 1: ALVINN Architecture

ALVINN: An autonomous land vehicle in a neural network, Pomerleau, 1988
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Policy Mismatch Problem

“In addition, the network must not solely be shown examples of accurate
driving, but also how to recover (i.e. return to the road center) once a
mistake has been made. Partial initial training on a variety of simulated
road images should help eliminate these difficulties and facilitate better
performance”

ALVINN: An Autonomous Land Vehicle In a Neural Network, [Pomerleau 1989]
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Demonstration Augmentation: NVIDIA 2016
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“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in
1989 built the Autonomous Land Vehicle in a Neural Network (ALVINN)

system. Training with data from only the human driver is not sufficient.
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Figure 2: Training the neural network.

The network must learn how to recover from mistakes. ...”

End to End Learning for Self-Driving Cars, Bojarski et al. 2016
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Challenges of Behavior Cloning

® Behavior cloning makes i.i.d. assumptions

O Next state is sampled from states observed during expert demonstration

O Thus, next state is sampled independently from action predicted by current policy

e What if mg makes a mistake?

O Enters new states that haven’t been observed before
O New states not sampled from same (expert) distribution anymore

o Cannot recover, catastrophic failure in the worst case

e What can we do to overcome this train/test distribution mismatch?
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When to use Behavioral Cloning?

Advantages Disadvantages

e Simple e | Distribution mismatch between

e Simple training and testing \

e Efficient e No long term planning

Use DAgger
instead!

Use When: Don’t Use When:

e 1-step deviations not too bad e 1-step deviations can lead to

e Learning reactive behaviors catastrophic error

e Expert trajectories “cover” state e Optimizing long-term objective

space (at least not without a stronger
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Algorithm 3 DAGGER [Ross et al., 2011]

Input: initial dataset of demonstrations D =
that % Zl\jl B; =0
Initialize: 7}
for i=1to N do
Let m; = Bim™ + (1 — ;)7

Sample trajectories 7 = [xq, ug, ..., T, ur| using m;

Get dataset D; of visited states by m; and actions given by expert.

Aggregate datasets: D <— D U D;
Train the policy 71, on D.
end for

return best 7% on validation.

{(m,u } {)’} such Steering

from L\Pk.ll

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011
Image: An invitation to imitation, Bagnell, 2015
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Algorithm 3 DAGGER [Ross et al., 2011]

Input: initial dataset of demonstrations D = {(x,u)}, {5;} such

that & S/, 3 — 0
Initialize: 7}

for i=1to N do

(Let m; = Bin® + (1 — B)nl. |

Sample trajectories T = [xg, ug, ..., Tp, up| using ;

Get dataset D; of visited states by 7; and actions given by expert.

Aggregate datasets: D <+ D U D;
Train the policy ‘/T};_] on D.

end for

return best 7~ on validation.

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011
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To better leverage the presence of the expert in our imita-
tion learning setting, we optionally allow the algorithm to
use a modified policy m; = 3;7* + (1 — 3;)7; at iteration
7 that queries the expert to choose controls a fraction of the
time while collecting the next dataset. This is often desir-
able in practice as the first few policies, with relatively few
datapoints, may make many more mistakes and visit states
that are irrelevant as the policy improves.

We will typically use [3; = 1 so that we do not have to spec-
ify an initial policy 7, before getting data from the expert’s
behavior. Then we could choose 3; = p*~! to have a prob-
ability of using the expert that decays exponentially as in
SMILe and SEARN. We show below the only requirement
is that {3;} be a sequence such that 3 = + 27\:1 8; — 0
as N — oo. The simple, parameter-free version of the al-
gorithm described above is the special case 3; = I(i = 1)
for [ the indicator function, which often performs best in
practice (see Section 5). The general DAGGER algorithm is



DAgger caveats

e Is hard for the expert to provide the right magnitude for the turn without feedback of his
own actions!
O Solution: provide visual feedback to expert
® The expert’s reaction time to the drone’s behavior is large, this causes imperfect actions to

be commanded.

o Solution: playback in slow motion offline and record their actions.

e Executing an imperfect policy causes accidents, crashes into obstacles.
O Solution: safety measures which again make the data distribution matching imperfect

between train and test, but good enough.
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Indirect Imitation Learning

Approaches that learn policies to imitate expert actions can be limited by several factors:

® Behavior cloning provides no way to understand the underlying reasons for the expert
behavior (no reasoning about outcomes or intentions).

e The “expert” may actually be suboptimal.
e A policy that is optimal for the expert may not be optimal for the agent if they have

different dynamics, morphologies, or capabilities.

An alternative approach: Learn expert’s intentions!

e Inverse Reinforcement Learning: Can we discover the reward function?
e Apprenticeship Learning: Can we then use the discovered reward to learn the optimal

policy?
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Apprenticeship Learning

Example 10.4.1 (Apprenticeship Learning vs. Behavioral Cloning). Consider a
problem where the goal is to drive a car across a city in as short of time as pos-
sible. In the imitation learning formulation it is assumed that the reward func-
tion is not known, but that there is an expert who shows how to drive across the
city (i.e. what routes to take). A behavioral cloning approach would simply try
to mimic the actions taken by the expert, such as memorizing that whenever the
agent is at a particular intersection it should turn right. Of course this approach
is not robust when at intersections that the expert never visited!

The apprenticeship learning approach tries to avoid the inefficiency of behav-
ioral cloning by instead identifying features of the expert’s trajectories that are
more generalizable, and developing a policy that experiences the same feature
expectations as the expert. For example it could be more efficient to notice that
the expert takes routes without stop signs, or routes with higher speed limits,
and then try to find policies that also seek out those features!

CS237b Stanford - Lecture 10: Imitation Learning
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