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Lecture Outline

1. So far: manually design reward function to define a task

2. What if we want to learn the reward function from observing an
expert, and then use reinforcement learning?

3. Apply approximate optimality model from last time, but now learn
the reward!
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Lecture Outline

1. So far: manually design reward function to define a task

What if we want to learn the reward function from observing an
expert, and then use reinforcement learning?

3. Apply approximate optimality model from last time, but now learn
the reward!

* Goals:
* Understand the inverse reinforcement learning problem definition

* Understand how probabilistic models of behavior can be used to derive
inverse reinforcement learning algorithms

* Understand a few practical inverse reinforcement learning algorithms we
can use
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Modeling Human Behavior with Optimal Control
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Modeling Human Behavior with Optimal Control

1131 Li;élﬂﬂl

Li & Todorov ‘06 Ziebart ‘08

Muybridge (c. 1870)
P
ai,...,ar = arg max Zr(st,at)
a1 4.0y arT et ¥
si11 = f(St,a) optimize this to explain the data

T = arg mfx Est+1~p(st+1 |st,at),ar~m(as|st) [T(Sta at)]

ap ~~ 7r(at|st)
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Imitation learning vs RL perspective

The imitation learning perspective

Standard imitation learning: Human imitation learning:
* copy the actions performed by the expert * copy the intent of the expert
* no reasoning about outcomes of actions * might take very different actions!
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Imitation learning vs RL perspective

The imitation learning perspective

Standard imitation learning: Human imitation learning:
* copy the actions performed by the expert * copy the intent of the expert
* no reasoning about outcomes of actions * might take very different actions!

The reinforcement learning perspective

reward

what is the reward?
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Inverse Reinforcement Learning

Infer reward functions from demonstrations

r(s,a)
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Inverse Reinforcement Learning

Infer reward functions from demonstrations

by itself, this is an underspecified problem

many reward functions can explain the same behavior

Lecture 20 - 10



Inverse Reinforcement Learning Formulation

“forward” reinforcement learning . inverse reinforcement learning
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Inverse Reinforcement Learning Formulation

“forward” reinforcement learning . inverse reinforcement learning
given: i given:
states s € S, actions a € A i statess € S, actionsa € A
(sometimes) transitions p(s’[s, a) i  (sometimes) transitions p(s’[s, a)
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Inverse Reinforcement Learning Formulation

“forward” reinforcement learning . inverse reinforcement learning
given: i given:
states s € S, actions a € A i statess € S, actionsa € A
(sometimes) transitions p(s’[s, a) i  (sometimes) transitions p(s’[s, a)

reward function r(s,a)
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Inverse Reinforcement Learning Formulation

“forward” reinforcement learning : inverse reinforcement learning
given: given:
states s € S, actions a € A states s € S, actions a € A
(sometimes) transitions p(s’[s, a) i  (sometimes) transitions p(s’[s, a)
reward function r(s,a) samples {7;} sampled from 7*(7)
learn 7*(als) i learn 7y(s,a)

k———— reward parameters

linear reward function:

TTP(S? a) — Zz wifi(sv a) — wa(Sv a)
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Inverse Reinforcement Learning Formulation

“forward” reinforcement learning : inverse reinforcement learning
given: given:
states s € S, actions a € A states s € S, actions a € A
(sometimes) transitions p(s’[s, a) i  (sometimes) transitions p(s’[s, a)
reward function r(s,a) samples {7;} sampled from 7*(7)
learn 7*(als) i learn 7y(s,a)

k———— reward parameters

linear reward function:

ry(s,a) = 3, i fi(s,a) = ¢Tf(s, a) - Ty(s,a)

- parameters v
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Inverse Reinforcement Learning Formulation

“forward” reinforcement learning : inverse reinforcement learning
given: given:
states s € S, actions a € A states s € S, actions a € A
(sometimes) transitions p(s’[s, a) i  (sometimes) transitions p(s’[s, a)
reward function r(s,a) samples {7;} sampled from 7*(7)
learn 7*(als) i learn 7y(s,a)

k———— reward parameters

...and then use it to learn 7*(a|s)

linear reward function:

ry(s,a) = 3, i fi(s,a) = ¢Tf(s, a) - Ty(s,a)

- parameters v
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Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)
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linear reward function:
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if features f are important, what if we match their expectations?
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Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = T f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7y
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Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7y
pick ¢ such that E r,[f(s,a)] = E.«[f(s,a)]
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Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7

pick 9 such that E r,[f(s,a)] = E.«[f(s,a)]
v

state-action marginal under 7"
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Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7y

pick v such that E_r,[f(s,a)] = E.«[f(s,a)] still amblg uous!
7 \

state-action marginal under 7"+ unknown optimal policy

approximate using expert samples
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Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7

pick v such that E_r,[f(s,a)] = E.«[f(s,a)] still amblg uous!
7 \

state-action marginal under 7"+ unknown optimal policy

approximate using expert samples
maximum margin principle:

max m such that ¢¥! E . [f(s,a)] > max Y E.[f(s,a)] +m
,m e
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Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7y

pick v such that E_r,[f(s,a)] = E.«[f(s,a)] still amblg uous!
7 \

state-action marginal under 7"+ unknown optimal policy

approximate using expert samples
maximum margin principle:

e such that ¥! E . [f(s,a)] > max Y EL[f(s,a)] +m

need to somehow “weight” by similarity between 7* and 7
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Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YT E[f(s,a)] +m
,m TE
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Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YU E[f(s,a)] +m
TE

p,m
1

mqgn §|WH2 such that 7 E.«[f(s,a)] > max YT E.[f(s,a)] + 1
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Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YU E[f(s,a)] +m
TE

p,m
1

mqgn §Hw|\2 such that 7 E.«[f(s,a)] > max YT E;[f(s,a)] + D(7, 7*)
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Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YT E[f(s,a)] +m
TE

p,m
1

min = ||1||>  such that %7 E +[f(s,a)] > max ! E,[f(s,a)] + D(r,7*)
P 2 mell \

e.g., difference in feature expectations!
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Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YT E[f(s,a)] +m
TE

p,m
1

min = ||1||>  such that ¥7 E +[f(s,a)] > max ! E,[f(s,a)] + D(r,7*)
P 2 mell \

e.g., difference in feature expectations!

Issues:
« Maximizing the margin is a bit arbitrary

Lecture 20 - 34



Feature Matching IRL & Maximum Margin

remember the “SVM trick”:
max m such that ¢! E+[f(s,a)] > max YT E[f(s,a)] +m
e

p,m

ngn %HM\Q such that 7 E.«[f(s,a)] > max YT E;[f(s,a)] + D(7, 7*)
i \

e.g., difference in feature expectations!

Issues:
« Maximizing the margin is a bit arbitrary
* No clear model of expert suboptimality (can add slack variables...)
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Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YT E[f(s,a)] +m
TE

p,m

| ¥

min = ||1||>  such that %7 E +[f(s,a)] > max ! E,[f(s,a)] + D(r,7*)
P 2 mell \

e.g., difference in feature expectations!

Issues:

« Maximizing the margin is a bit arbitrary

* No clear model of expert suboptimality (can add slack variables...)

* Messy constrained optimization problem — not great for deep learning!
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Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YU E [f(s,a)] +m
TE

p,m

| ¥

mwin §H¢H2 such that ¢! E.«[f(s,a)] > max Y1 E.[f(s,a)] + D(7, 7*)
’“ \

e.g., difference in feature expectations!

Issues:

* Maximizing the margin is a bit arbitrary

* No clear model of expert suboptimality (can add slack variables...)

« Messy constrained optimization problem — not great for deep learning!

Further reading:
« Abbeel & Ng: Apprenticeship learning via inverse reinforcement learning
* Ratliff et al: Maximum margin planning
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Modeling Human Behavior with Optimal Control
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Modeling Human Behavior with Optimal Control
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Modeling Human Behavior with Optimal Control

EEL&S&MM

Muybrldge (c. 1870)

m \E7Z
Ziebart ‘08

Li & Todorov ‘06

p(Otlst, ar) = exp(r(s¢, ar))
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Modeling Human Behavior with Optimal Control

Eﬁﬁiﬁﬁuﬂﬁl -~'f;L>‘= | :.' ; ;[1

Muybrldge (c. 1870) Li & Todorov ‘06 Ziebart ‘08

p(Otlst, ar) = exp(r(s¢, ar))
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A probabilistic graphical model of decision making

p(s1.T,a1.7) =77
N
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A probabilistic graphical model of decision making

p(si.r,a1.7) =?? no assumption of optimal behavior!
N——

& =|

P(T|?_1;T) p(O¢lst, ar) = exp(r(st, ar))
d OI:T N 1'..
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A probabilistic graphical model of decision making

p(si.r,a1.7) =?? no assumption of optimal behavior!

e @ Soft Q:t'

p(7|O1.1) ‘];(Ot|st,at) = exp(r(se, ar))
o - 20 (2) Cominieot
p( \E:T) - p(olzT) 2 T
x p(7) | | exp(r(st,ar)) = p(7) exp (Z T(St,at)> LwverSiom
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Learning the optimality variable

P(C)f\sn a) = (3-\{[)(7':;‘(3# at))
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Learning the optimality variable

P(C)f\sn a) = (3-\{[)(7':;‘(3# at))
\"---....__...-/ '_‘-‘

k———- reward parameters
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Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at))

p(7|O1.7, %)
S— —

Lice lihood
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Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at))

p(7|O1.7, %) x p(T)exp (Z rb,(s,,af))

t
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Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at)) given:

samples {7;} sampled from 7*(7)

e S
p(7|O1.7, %) x p(T)exp (Z rb,(s,,af))

t
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Learning the optimality variable

t.l.'cl given: ?( G, T -(M )

p(O¢|st, at, ¥) = exp(ry(st, at))
/\m/ples {7} sampled from 7*(7)
])(T|(9]:,,.,1,1@p(7") exp (Z rb,(s,,af)) = F(‘(‘ /y) P(TMI’Y)
N

t —

maximum likelihoclld learning
(P('flomﬂ‘ r

2. | prespl-Me F@)- PO AP (2 il

............
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Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at)) given:

samples {7;} sampled from 7*(7)

p(7|O1.7, %) x p(T)exp (Z rb,(s,,af))

t

N
1
maximum likelihood learning: max N Z log p(7;|O1.7, )
i=1

Y

» E B B EEEEEEER
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Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at)) given:

samples {7;} sampled from 7*(7)
p(7|O1.17, %) %//)oxp (Z rv(St, a,))
t

can ignore (independent of )

N
1
maximum likelihood learning: max N Z log p(7;|O1.7, )
i=1

Y

» E B B EEEEEEER
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Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at)) given:

samples {7;} sampled from 7*(7)

p(7|O1.7,9) g(//)OXP (Z r(,,(s,,a,)) \
t

can ignore (independent of )

N N
1 1
maximum likelihood learning:  max — log p(7;|O1.7,%) = max — ro(m) — log Z
g ax ;:1: g p(7:|O1.7, ) o ;:1: i( ) — log
= Z r(s_‘vlﬁj)
S}.’ AJ. e T‘.

» E B B EEEEEEER
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Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at)) given:

samples {7;} sampled from 7*(7)

p(7|O1.7,9) g(//)OXP (Z r(,,(s,,a,)) \
t

can ignore (independent of )

1 N

N
1
maximum likelihood learning;: mgx I Z log p(7;|O1.7, %) = max N Z ry(T;) —log Z

1=1 i =l N\
partition function
(the hard part)

» E B B EEEEEEER
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The IRL Partiotion Function

N
1
max — ro(Ti) —log Z
2 Nz'E:l: v(7i) — log
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The IRL Partiotion Function

mgx % Z ry(7i) —log Z 7 /p(T) exp(ry(7))dr
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The IRL Partiotion Function

T = (S,,m.,gz, P
1
maxNer(Ti) —log Z Z = /p(T) exp(ry(7))dT
P(T/Oy:r.7)

Vyl = — Z Vyry (7i) —@ /@) eXp(W(MF)dT
PO ¢
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The IRL Partiotion Function
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The IRL Partition Function

e % Z ry(7i) —log Z Z = /p(T) exp(ry(7))dr

VoL =+ 3 Vuro(m) - 5 [ pr)exp(ri(r) Vary(r)dr

\ J
1

p(T|(91:T>¢)

VL = Ernr () [Vyry(Ti)] = Erapr|On.r,0) [VyTy(T)]
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The IRL Partiotion Function

e % Z ry(7i) —log Z Z = /p(T) exp(ry(7))dT

VoL =+ 3 Vuro(m) - 5 [ pr)expri(r) Vary(r)dr

\ J
1

p(T|(91:T>¢)

VL = Ernr () [Vyry(Ti)] = Ercpr|0m.0,0) [VyTy(T)]

/

estimate with expert samples
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The IRL Partiotion Function

e % Z ry(7i) —log Z Z = /p(T) exp(ry(7))dT

VoL =+ 3 Vuro(m) - 5 [ pr)expri(r) Vary(r)dr

\ J
1

p(T|(91:T>¢)

VL = Ernr () [Vyry(Ti)] = Ercpr|0m.0,0) [VyTy(T)]

/ \

estimate with expert samples soft optimal policy under current reward
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Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VyL = ETN?T*(T)[vaw (7)) — ETNP(T|01:T,1/J)[V¢T¢’ (7)]
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Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VyL = ETN?T*(T)[vaw (7)) — ETNP(T|01:T,1/J)[V¢T¢’ (7)]

7 \

estimate with expert samples soft optimal policy under current reward
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Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VyL = ETN?T*(T)[vaw (7)) — ETNP(T|01:T,1/J)[V¢T¢’ (7)]
/ N\

estimate with expert samples soft optimal policy under current reward

idea: learn p(a;|s¢, O1.7,1) using any max-ent RL algorithm
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Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VoL = Ernr(+)[VyTy(T)] = Erap(r|01.7,0) [VoTyp(T)]

7 \

estimate with expert samples soft optimal policy under current reward

idea: learn p(a;|s¢, O1.7,%) using any max-ent RL algorithm

J(6) =) Er(s,an)[rv (st ar)] + Ers,) [H(r(alsy))]
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Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VoL = Ernr()[VyTy(T)] = Erap(r|01.7,0) [VoTy(T)]

7 \

estimate with expert samples soft optimal policy under current reward

idea: learn p(a;|s¢, O1.7,1) using any max-ent RL algorithm

then run this policy to sample {7;}
’ J(6) =) Ers,an)[rv (st ar)] + Ens,) [H(m(alsy))]
)

] . =
Vyl~ > Vyry(r) — i > Vyry(r;)
i=1 F=i
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Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VoL = Ernr(+)[VyTy(T)] = Erap(r|01.7,0) [VoTyp(T)]

7 \

estimate with expert samples soft optimal policy under current reward

idea: learn p(a;|s¢, O1.7,%) using any max-ent RL algorithm

then run this policy to sample {7;}
’ J(6) =) Er(s,an)[rv (st ar)] + Ers,) [H(r(alsy))]
)

] . =
Vyl~ Y Vyry(r) — i > Vyry(r;)
i=1 F=i

7 \

sum over expert samples sum over policy samples
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More Efficient Sample-Based Updates

N M
1
VLl = N Z Ve (Ti) Z il s
7 \
sum over expert samples sum over policy samples

learn p(a;|s;, O1.7,%) using any max-ent RL algorithm
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More Efficient Sample-Based Updates

N M
1
VLl = N Z Ve (Ti) Z il s
7 \
sum over expert samples sum over policy samples

learn p(a;|s;, O1.7,%) using any max-ent RL algorithm

then run this policy to sample {Tj}
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More Efficient Sample-Based Updates

N M
1
VU,E% NZVQN% TZ ZVQZJTQP TJ
7 \
sum over expert samples sum over policy samples

learn p(a;|s;, O1.7,%) using any max-ent RL algorithm

then run this policy to sample {Tj}

looks expensive! what if we use “lazy” policy optimization?
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More Efficient Sample-Based Updates

N M
1
VLl = N Z Ve (Ti) Z il s
7 \
sum over expert samples sum over policy samples

improve leess p(a;|ss, O1.7, 1) using any max-ent RL algorithm
then run this policy to sample {7;}

looks expensive! what if we use “lazy” policy optimization?
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More Efficient Sample-Based Updates

N M
1
VLl = N Z Vury(Ti) Z RV b
7 \
sum over expert samples sum over policy samples

improve leess p(a;|ss, O1.7, 1) using any max-ent RL algorithm

(a little) then run this policy to sample {7' j}

looks expensive! what if we use “lazy” policy optimization?
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More Efficient Sample-Based Updates
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7 \
sum over expert samples sum over policy samples
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problem: estimator is now biased! wrong distribution!
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More Efficient Sample-Based Updates

N M
1
VLl = N Z Vry(Ti) Z RV A b
7 \
sum over expert samples sum over policy samples

improve leass p(a;|ss, O1.7, 1) using any max-ent RL algorithm

(a little) then run thlS pOhCy to Sample {T]}

looks expensive! what if we use “lazy” policy optimization?
problem: estimator is now biased! wrong distribution!

solution 1: use importance sampling
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Importance Sampling
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Importance Sampling

VoLn 5 3 Vury(n) - s dowVare(n) vy = p(r) exp(ry (7))

i=1 g 4 y=il m(75)
\
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Importance Sampling
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Importance Sampling
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Importance Sampling

ptsy) [ 1, PSTrrsemay) exp(ry (st ar))
Ptsy) [ [, Plsresiseay)m(afs:)

_ exp(Q; Ty (St ar))
1, m(aslst)

each policy update w.r.t. ry brings us closer to the target distribution!
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Guided Cost Learning Algorithm (Finn et al. ICML ’16)

initial human
policy Tt demonstrations
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initial human
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Update reward using
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Guided Cost Learning Algorithm (Finn et al. ICML ’16)

initial human
policy Tt demonstrations
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Suggested Reading on Inverse RL

Classic Papers:

Abbeel & Ng ICML '04. Apprenticeship Learning via Inverse Reinforcement Learning.
Good introduction to inverse reinforcement learning

Ziebart et al. AAAI '08. Maximum Entropy Inverse Reinforcement Learning. Introduction
to probabilistic method for inverse reinforcement learning

Modern Papers:

Finn et al. ICML "16. Guided Cost Learning. Sampling based method for MaxEnt IRL that
handles unknown dynamics and deep reward functions

Waulfmeier et al. arXiv '16. Deep Maximum Entropy Inverse Reinforcement Learning.
MaxEnt inverse RL using deep reward functions

Ho & Ermon NIPS '16. Generative Adversarial Imitation Learning. Inverse RL method
using generative adversarial networks

Fu, Luo, Levine ICLR "18. Learning Robust Rewards with Adversarial Inverse
Reinforcement Learning
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