Computer Engineering Department

Inverse Reinforcement Learning

Mohammad Hossein Rohban, Ph.D. \
N’

Spring 2025 -
Slides are adopted from GS285, 'UC Berkeley.

Lecture Outline

1. So far: manually design reward function to define a task

2. What if we want to learn the reward function from observing an
expert, and then use reinforcement learning?

3. Apply approximate optimality model from last time, but now learn
the reward!

Lecture 20 - 2

Lecture Outline

1. So far: manually design reward function to define a task

What if we want to learn the reward function from observing an
expert, and then use reinforcement learning?

3. Apply approximate optimality model from last time, but now learn
the reward!

* Goals:
* Understand the inverse reinforcement learning problem definition

* Understand how probabilistic models of behavior can be used to derive
inverse reinforcement learning algorithms

* Understand a few practical inverse reinforcement learning algorithms we
can use

Lecture 20 -3

Modeling Human Behavior with Optimal Control

EEL&:’EMH

g ’ m W7
Muybrldge (c. 1870) Mombaur et al. ‘09 Li & Todorov ‘06 Ziebart ‘08

T

ay,...,ar = arg max E r(s¢, ar)
a1 4.0y
T =1

St+1 = f(St,at)

Lecture 20-4

Modeling Human Behavior with Optimal Control

1131 Li;élﬂﬂl

Li & Todorov ‘06 Ziebart ‘08

Muybridge (c. 1870)
P
ai,...,ar = arg max Zr(st,at)
a1 4.0y arT et ¥
si11 = f(St,a) optimize this to explain the data

T = arg mfx Est+1~p(st+1 |st,at),ar~m(as|st) [T(Sta at)]

ap ~~ 7r(at|st)

Lecture 20 -5

Imitation learning vs RL perspective

The imitation learning perspective

Standard imitation learning: Human imitation learning:
* copy the actions performed by the expert * copy the intent of the expert
* no reasoning about outcomes of actions * might take very different actions!

Lecture 20 -6

Imitation learning vs RL perspective

The imitation learning perspective

Standard imitation learning: Human imitation learning:
* copy the actions performed by the expert * copy the intent of the expert
* no reasoning about outcomes of actions * might take very different actions!

The reinforcement learning perspective

reward

Lecture 20 -7

Imitation learning vs RL perspective

The imitation learning perspective

Standard imitation learning: Human imitation learning:
* copy the actions performed by the expert * copy the intent of the expert
* no reasoning about outcomes of actions * might take very different actions!

The reinforcement learning perspective

reward

what is the reward?

Lecture 20 - 8

Inverse Reinforcement Learning

Infer reward functions from demonstrations

r(s,a)

Lecture 20 -9

Inverse Reinforcement Learning

Infer reward functions from demonstrations

by itself, this is an underspecified problem

many reward functions can explain the same behavior

Lecture 20 - 10

Inverse Reinforcement Learning Formulation

“forward” reinforcement learning . inverse reinforcement learning

Lecture 20 - 11

Inverse Reinforcement Learning Formulation

“forward” reinforcement learning . inverse reinforcement learning
given: i given:
states s € S, actions a € A i statess € S, actionsa € A
(sometimes) transitions p(s’[s, a) i (sometimes) transitions p(s’[s, a)

Lecture 20-12

Inverse Reinforcement Learning Formulation

“forward” reinforcement learning . inverse reinforcement learning
given: i given:
states s € S, actions a € A i statess € S, actionsa € A
(sometimes) transitions p(s’[s, a) i (sometimes) transitions p(s’[s, a)

reward function r(s,a)

Lecture 20 - 13

Inverse Reinforcement Learning Formulation

“forward” reinforcement learning : inverse reinforcement learning
given: given:
states s € S, actions a € A states s € S, actions a € A
(sometimes) transitions p(s’[s, a) i (sometimes) transitions p(s’[s, a)
reward function r(s,a) samples {7;} sampled from 7*(7)

Lecture 20 - 14

Inverse Reinforcement Learning Formulation

“forward” reinforcement learning : inverse reinforcement learning
given: given:
states s € S, actions a € A states s € S, actions a € A
(sometimes) transitions p(s’[s, a) : (sometimes) transitions p(s'[s, a)
reward function r(s,a) samples {7;} sampled from 7*(7)

learn 7*(als)

Lecture 20 - 15

Inverse Reinforcement Learning Formulation

“forward” reinforcement learning : inverse reinforcement learning
given: given:
states s € S, actions a € A states s € S, actions a € A
(sometimes) transitions p(s’[s, a) : (sometimes) transitions p(s’[s, a)
reward function r(s,a) samples {7;} sampled from 7*(7)
learn 7*(als) i learn 7y(s,a)

k———— reward parameters

Lecture 20 - 16

Inverse Reinforcement Learning Formulation

“forward” reinforcement learning : inverse reinforcement learning
given: given:
states s € S, actions a € A states s € S, actions a € A
(sometimes) transitions p(s’[s, a) i (sometimes) transitions p(s’[s, a)
reward function r(s,a) samples {7;} sampled from 7*(7)
learn 7*(als) i learn 7y(s,a)

k———— reward parameters

linear reward function:

TTP(S? a) — Zz wifi(sv a) — wa(Sv a)

Lecture 20-17

Inverse Reinforcement Learning Formulation

“forward” reinforcement learning : inverse reinforcement learning
given: given:
states s € S, actions a € A states s € S, actions a € A
(sometimes) transitions p(s’[s, a) i (sometimes) transitions p(s’[s, a)
reward function r(s,a) samples {7;} sampled from 7*(7)
learn 7*(als) i learn 7y(s,a)

k———— reward parameters

linear reward function:

ry(s,a) = 3, i fi(s,a) = ¢Tf(s, a) - Ty(s,a)

- parameters v

Lecture 20 - 18

Inverse Reinforcement Learning Formulation

“forward” reinforcement learning : inverse reinforcement learning
given: given:
states s € S, actions a € A states s € S, actions a € A
(sometimes) transitions p(s’[s, a) i (sometimes) transitions p(s’[s, a)
reward function r(s,a) samples {7;} sampled from 7*(7)
learn 7*(als) i learn 7y(s,a)

k———— reward parameters

...and then use it to learn 7*(a|s)

linear reward function:

ry(s,a) = 3, i fi(s,a) = ¢Tf(s, a) - Ty(s,a)

- parameters v

Lecture 20 - 19

Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

Lecture 20 - 20

Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

Lecture 20 - 21

Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = T f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7y

Lecture 20 - 22

Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7y
pick ¢ such that E r,[f(s,a)] = E.«[f(s,a)]

Lecture 20 - 23

Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7

pick 9 such that E r,[f(s,a)] = E.«[f(s,a)]
v

state-action marginal under 7"

Lecture 20 - 24

Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7

pick 9 such that E r,[f(s,a)] = E.«[f(s,a)]
” \

state-action marginal under 7"+ unknown optimal policy

Lecture 20 - 25

Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7

pick 9 such that E r,[f(s,a)] = E.«[f(s,a)]
” \

state-action marginal under 7"+ unknown optimal policy

approximate using expert samples

Lecture 20 - 26

Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7y

pick v such that E_r,[f(s,a)] = E.«[f(s,a)] still amblg uous!
7 \

state-action marginal under 7"+ unknown optimal policy

approximate using expert samples

Lecture 20 - 27

Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7

pick v such that E_r,[f(s,a)] = E.«[f(s,a)] still amblg uous!
7 \

state-action marginal under 7"+ unknown optimal policy

approximate using expert samples
maximum margin principle:

max m such that ¢¥! E . [f(s,a)] > max Y E.[f(s,a)] +m
,m e

Lecture 20 - 28

Feature Matching Inverse RL

linear reward function:

ry(s,a) = > i fi(s,a) = YT f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for 7y

pick v such that E_r,[f(s,a)] = E.«[f(s,a)] still amblg uous!
7 \

state-action marginal under 7"+ unknown optimal policy

approximate using expert samples
maximum margin principle:

e such that ¥! E . [f(s,a)] > max Y EL[f(s,a)] +m

need to somehow “weight” by similarity between 7* and 7

Lecture 20 - 29

Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YT E[f(s,a)] +m
,m TE

Lecture 20 - 30

Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YU E[f(s,a)] +m
TE

p,m
1

mqgn §|WH2 such that 7 E.«[f(s,a)] > max YT E.[f(s,a)] + 1

Lecture 20 - 31

Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YU E[f(s,a)] +m
TE

p,m
1

mqgn §Hw|\2 such that 7 E.«[f(s,a)] > max YT E;[f(s,a)] + D(7, 7*)

Lecture 20 - 32

Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YT E[f(s,a)] +m
TE

p,m
1

min = ||1||> such that %7 E +[f(s,a)] > max ! E,[f(s,a)] + D(r,7*)
P 2 mell \

e.g., difference in feature expectations!

Lecture 20 - 33

Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YT E[f(s,a)] +m
TE

p,m
1

min = ||1||> such that ¥7 E +[f(s,a)] > max ! E,[f(s,a)] + D(r,7*)
P 2 mell \

e.g., difference in feature expectations!

Issues:
« Maximizing the margin is a bit arbitrary

Lecture 20 - 34

Feature Matching IRL & Maximum Margin

remember the “SVM trick”:
max m such that ¢! E+[f(s,a)] > max YT E[f(s,a)] +m
e

p,m

ngn %HM\Q such that 7 E.«[f(s,a)] > max YT E;[f(s,a)] + D(7, 7*)
i \

e.g., difference in feature expectations!

Issues:
« Maximizing the margin is a bit arbitrary
* No clear model of expert suboptimality (can add slack variables...)

Lecture 20 - 35

Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YT E[f(s,a)] +m
TE

p,m

| ¥

min = ||1||> such that %7 E +[f(s,a)] > max ! E,[f(s,a)] + D(r,7*)
P 2 mell \

e.g., difference in feature expectations!

Issues:

« Maximizing the margin is a bit arbitrary

* No clear model of expert suboptimality (can add slack variables...)

* Messy constrained optimization problem — not great for deep learning!

Lecture 20 - 36

Feature Matching IRL & Maximum Margin

remember the “SVM trick”:

max m such that ¢! E+[f(s,a)] > max YU E [f(s,a)] +m
TE

p,m

| ¥

mwin §H¢H2 such that ¢! E.«[f(s,a)] > max Y1 E.[f(s,a)] + D(7, 7*)
’“ \

e.g., difference in feature expectations!

Issues:

* Maximizing the margin is a bit arbitrary

* No clear model of expert suboptimality (can add slack variables...)

« Messy constrained optimization problem — not great for deep learning!

Further reading:
« Abbeel & Ng: Apprenticeship learning via inverse reinforcement learning
* Ratliff et al: Maximum margin planning

Lecture 20 - 37

Modeling Human Behavior with Optimal Control

EEQHSMH

g ’ m (€7
Muybrldge (c. 1870) Mombaur et al. ‘09 Li & Todorov ‘06 Ziebart ‘08

Lecture 20 - 38

Modeling Human Behavior with Optimal Control

EEL&S&MM

Muybrldge (c. 1870)

" m \t7Z
Li & Todorov ‘06 Ziebart ‘08

Lecture 20 - 39

Modeling Human Behavior with Optimal Control

EEL&S&MM

Muybrldge (c. 1870)

m \E7Z
Ziebart ‘08

Li & Todorov ‘06

Lecture 20 - 40

Modeling Human Behavior with Optimal Control

EEL&S&MM

Muybrldge (c. 1870)

m \E7Z
Ziebart ‘08

Li & Todorov ‘06

Lecture 20 -41

Modeling Human Behavior with Optimal Control

EEL&S&MM

Muybrldge (c. 1870)

m \E7Z
Ziebart ‘08

Li & Todorov ‘06

p(Otlst, ar) = exp(r(s¢, ar))

Lecture 20 -42

Modeling Human Behavior with Optimal Control

Eﬁﬁiﬁﬁuﬂﬁl -~'f;L>‘= | :.' ; ;[1

Muybrldge (c. 1870) Li & Todorov ‘06 Ziebart ‘08

p(Otlst, ar) = exp(r(s¢, ar))

Lecture 20 - 43

A probabilistic graphical model of decision making

p(s1.T,a1.7) =77
N

Lecture 20 - 44

A probabilistic graphical model of decision making

p(si.r,a1.7) =?? no assumption of optimal behavior!
N——

& =|

P(T|?_1;T) p(O¢lst, ar) = exp(r(st, ar))
d OI:T N 1'..

Lecture 20 - 45

A probabilistic graphical model of decision making

p(si.r,a1.7) =?? no assumption of optimal behavior!

e @ Soft Q:t'

p(7|O1.1) ‘];(Ot|st,at) = exp(r(se, ar))
o - 20 (2) Cominieot
p(\E:T) - p(olzT) 2 T
x p(7) | | exp(r(st,ar)) = p(7) exp (Z T(St,at)> LwverSiom

Lecture 20 - 46

Learning the optimality variable

P(C)f\sn a) = (3-\{[)(7':;‘(3# at))

Lecture 20 - 47

Learning the optimality variable

P(C)f\sn a) = (3-\{[)(7':;‘(3# at))
\"---....__...-/ '_‘-‘

k———- reward parameters

Lecture 20 - 48

Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at))

p(7|O1.7, %)
S— —

Lice lihood

Lecture 20 - 49

Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at))

p(7|O1.7, %) x p(T)exp (Z rb,(s,,af))

t

Lecture 20 - 50

Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at)) given:

samples {7;} sampled from 7*(7)

e S
p(7|O1.7, %) x p(T)exp (Z rb,(s,,af))

t

Lecture 20 - 51

Learning the optimality variable

t.l.'cl given: ?(G, T -(M)

p(O¢|st, at, ¥) = exp(ry(st, at))
/\m/ples {7} sampled from 7*(7)
])(T|(9]:,,.,1,1@p(7") exp (Z rb,(s,,af)) = F(‘(‘ /y) P(TMI’Y)
N

t —

maximum likelihoclld learning
(P('flomﬂ‘ r

2. | prespl-Me F@)- PO AP (2 il

............

Lecture 20 - 52

Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at)) given:

samples {7;} sampled from 7*(7)

p(7|O1.7, %) x p(T)exp (Z rb,(s,,af))

t

N
1
maximum likelihood learning: max N Z log p(7;|O1.7,)
i=1

Y

» E B B EEEEEEER

Lecture 20 - 53

Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at)) given:

samples {7;} sampled from 7*(7)
p(7|O1.17, %) %//)oxp (Z rv(St, a,))
t

can ignore (independent of)

N
1
maximum likelihood learning: max N Z log p(7;|O1.7,)
i=1

Y

» E B B EEEEEEER

Lecture 20 - 54

Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at)) given:

samples {7;} sampled from 7*(7)

p(7|O1.7,9) g(//)OXP (Z r(,,(s,,a,)) \
t

can ignore (independent of)

N N
1 1
maximum likelihood learning: max — log p(7;|O1.7,%) = max — ro(m) — log Z
g ax ;:1: g p(7:|O1.7,) o ;:1: i() — log
= Z r(s_‘vlﬁj)
S}.’ AJ. e T‘.

» E B B EEEEEEER

Lecture 20 - 55

Learning the optimality variable

p(O¢|st, at, ¥) = exp(ry(st, at)) given:

samples {7;} sampled from 7*(7)

p(7|O1.7,9) g(//)OXP (Z r(,,(s,,a,)) \
t

can ignore (independent of)

1 N

N
1
maximum likelihood learning;: mgx I Z log p(7;|O1.7, %) = max N Z ry(T;) —log Z

1=1 i =l N\
partition function
(the hard part)

» E B B EEEEEEER

Lecture 20 - 56

The IRL Partiotion Function

N
1
max — ro(Ti) —log Z
2 Nz'E:l: v(7i) — log

Lecture 20 - 57

The IRL Partiotion Function

mgx % Z ry(7i) —log Z 7 /p(T) exp(ry(7))dr

Lecture 20 - 58

The IRL Partiotion Function

T = (S,,m.,gz, P
1
maxNer(Ti) —log Z Z = /p(T) exp(ry(7))dT
P(T/Oy:r.7)

Vyl = — Z Vyry (7i) —@ /@) eXp(W(MF)dT
PO ¢

Lecture 20 - 59

The IRL Partiotion Function

Lecture 20 - 60

The IRL Partition Function

e % Z ry(7i) —log Z Z = /p(T) exp(ry(7))dr

VoL =+ 3 Vuro(m) - 5 [pr)exp(ri(r) Vary(r)dr

\ J
1

p(T|(91:T>¢)

VL = Ernr () [Vyry(Ti)] = Erapr|On.r,0) [VyTy(T)]

Lecture 20 - 61

The IRL Partiotion Function

e % Z ry(7i) —log Z Z = /p(T) exp(ry(7))dT

VoL =+ 3 Vuro(m) - 5 [pr)expri(r) Vary(r)dr

\ J
1

p(T|(91:T>¢)

VL = Ernr () [Vyry(Ti)] = Ercpr|0m.0,0) [VyTy(T)]

/

estimate with expert samples

Lecture 20 - 62

The IRL Partiotion Function

e % Z ry(7i) —log Z Z = /p(T) exp(ry(7))dT

VoL =+ 3 Vuro(m) - 5 [pr)expri(r) Vary(r)dr

\ J
1

p(T|(91:T>¢)

VL = Ernr () [Vyry(Ti)] = Ercpr|0m.0,0) [VyTy(T)]

/ \

estimate with expert samples soft optimal policy under current reward

Lecture 20 - 63

Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VyL = ETN?T*(T)[vaw (7)) — ETNP(T|01:T,1/J)[V¢T¢’ (7)]

Lecture 20 - 97

Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VyL = ETN?T*(T)[vaw (7)) — ETNP(T|01:T,1/J)[V¢T¢’ (7)]
/

estimate with expert samples

Lecture 20 - 98

Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VyL = ETN?T*(T)[vaw (7)) — ETNP(T|01:T,1/J)[V¢T¢’ (7)]

7 \

estimate with expert samples soft optimal policy under current reward

Lecture 20 - 99

Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VyL = ETN?T*(T)[vaw (7)) — ETNP(T|01:T,1/J)[V¢T¢’ (7)]
/ N\

estimate with expert samples soft optimal policy under current reward

idea: learn p(a;|s¢, O1.7,1) using any max-ent RL algorithm

Lecture 20 - 100

Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VoL = Ernr(+)[VyTy(T)] = Erap(r|01.7,0) [VoTyp(T)]

7 \

estimate with expert samples soft optimal policy under current reward

idea: learn p(a;|s¢, O1.7,%) using any max-ent RL algorithm

J(6) =) Er(s,an)[rv (st ar)] + Ers,) [H(r(alsy))]

Lecture 20 - 101

Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VoL = Ernr()[VyTy(T)] = Erap(r|01.7,0) [VoTy(T)]

7 \

estimate with expert samples soft optimal policy under current reward

idea: learn p(a;|s¢, O1.7,1) using any max-ent RL algorithm

then run this policy to sample {7;}
’ J(6) =) Ers,an)[rv (st ar)] + Ens,) [H(m(alsy))]
)

] . =
Vyl~ > Vyry(r) — i > Vyry(r;)
i=1 F=i

Lecture 20 - 102

Unknown Dynamics & Large State/Action Spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VoL = Ernr(+)[VyTy(T)] = Erap(r|01.7,0) [VoTyp(T)]

7 \

estimate with expert samples soft optimal policy under current reward

idea: learn p(a;|s¢, O1.7,%) using any max-ent RL algorithm

then run this policy to sample {7;}
’ J(6) =) Er(s,an)[rv (st ar)] + Ers,) [H(r(alsy))]
)

] . =
Vyl~ Y Vyry(r) — i > Vyry(r;)
i=1 F=i

7 \

sum over expert samples sum over policy samples

Lecture 20 - 103

More Efficient Sample-Based Updates

N M
1
VLl = N Z Ve (Ti) Z il s
7 \
sum over expert samples sum over policy samples

learn p(a;|s;, O1.7,%) using any max-ent RL algorithm

Lecture 20 - 104

More Efficient Sample-Based Updates

N M
1
VLl = N Z Ve (Ti) Z il s
7 \
sum over expert samples sum over policy samples

learn p(a;|s;, O1.7,%) using any max-ent RL algorithm

then run this policy to sample {Tj}

Lecture 20 - 105

More Efficient Sample-Based Updates

N M
1
VU,E% NZVQN% TZ ZVQZJTQP TJ
7 \
sum over expert samples sum over policy samples

learn p(a;|s;, O1.7,%) using any max-ent RL algorithm

then run this policy to sample {Tj}

looks expensive! what if we use “lazy” policy optimization?

Lecture 20 - 106

More Efficient Sample-Based Updates

N M
1
VLl = N Z Ve (Ti) Z il s
7 \
sum over expert samples sum over policy samples

improve leess p(a;|ss, O1.7, 1) using any max-ent RL algorithm
then run this policy to sample {7;}

looks expensive! what if we use “lazy” policy optimization?

Lecture 20 - 107

More Efficient Sample-Based Updates

N M
1
VLl = N Z Vury(Ti) Z RV b
7 \
sum over expert samples sum over policy samples

improve leess p(a;|ss, O1.7, 1) using any max-ent RL algorithm

(a little) then run this policy to sample {7' j}

looks expensive! what if we use “lazy” policy optimization?

Lecture 20 - 108

More Efficient Sample-Based Updates

N M
1
VLl = N Z Vury(Ti) Z RV b
7 \
sum over expert samples sum over policy samples

improve leass p(a;|ss, O1.7, 1) using any max-ent RL algorithm

(a little) then run this policy to sample {7' j}

looks expensive! what if we use “lazy” policy optimization?

problem: estimator is now biased! wrong distribution!

Lecture 20 - 109

More Efficient Sample-Based Updates

N M
1
VLl = N Z Vry(Ti) Z RV A b
7 \
sum over expert samples sum over policy samples

improve leass p(a;|ss, O1.7, 1) using any max-ent RL algorithm

(a little) then run thlS pOhCy to Sample {T]}

looks expensive! what if we use “lazy” policy optimization?
problem: estimator is now biased! wrong distribution!

solution 1: use importance sampling

Lecture 20 - 110

More Efficient Sample-Based Updates

N M
1
VLl = N Z Vry(Ti) Z il s
7 \
sum over expert samples sum over policy samples

improve leass p(a;|sy, O1.7, 1) using any max-ent RL algorithm

(a little) then run this policy to sample {7' j}

looks expensive! what if we use “lazy” policy optimization?
problem: estimator is now biased! wrong distribution!

solution 1: use importance sampling

N
1 I
VLl m =) Vyry(rn) - Z w;VyTy(7;)
N =1 Z]

_7 1

Lecture 20 - 111

More Efficient Sample-Based Updates

N M
1
VLl = N Z Vry(Ti) Z il s
7 \
sum over expert samples sum over policy samples

improve leass p(a;|sy, O1.7, 1) using any max-ent RL algorithm

(a little) then run this policy to sample {7' j}

looks expensive! what if we use “lazy” policy optimization?
problem: estimator is now biased! wrong distribution!

solution 1: use importance sampling

VoL m 5) Vurelr) - 21 S Suigngle) w; = PO G;I;T(r)w (7))
: T, 2 :

Lecture 20 -112

Importance Sampling

Lecture 20 - 113

Importance Sampling

VoLn 5 3 Vury(n) - s dowVare(n) vy = p(r) exp(ry (7))

i=1 g 4 y=il m(75)
\
p(s1) [[; p(st+1|st, ar) exp(ry (st at))
p(s1) [1; p(st+1lse, at)m(at[st)

Lecture 20-114

Importance Sampling

ptsy) [[, PSTrrsemay) exp(ry (st ar))
Ptsy) [[, Plsresiseay)m(afs:)

Lecture 20 - 115

Importance Sampling

ptsy) [1, PSTrrsemay) exp(ry (i, ar))
Ptsy) [[, Plsresiseay)m(afs:)

_ exp(Q_; Ty (st ar))
1, m(a¢lst)

Lecture 20 - 116

Importance Sampling

ptsy) [1, PSTrrsemay) exp(ry (st ar))
Ptsy) [[, Plsresiseay)m(afs:)

_ exp(Q; Ty (St ar))
1, m(aslst)

each policy update w.r.t. ry brings us closer to the target distribution!

Lecture 20 - 117

Guided Cost Learning Algorithm (Finn et al. ICML ’16)

initial human
policy Tt demonstrations

Lecture 20 - 118

Guided Cost Learning Algorithm (Finn et al. ICML ’16)

initial human
policy Tt demonstrations

|

generate policy
samples from 1t

o

Lecture 20 - 119

Guided Cost Learning Algorithm (Finn et al. ICML ’16)

initial human
policy Tt demonstrations

generate policy ®) — BN
samples from Tt % L =@
Q @ @ /

Update reward using
samples & demos

Lecture 20 -120

Guided Cost Learning Algorithm (Finn et al. ICML ’16)

initial human
policy Tt demonstrations

generate policy ®) — DN
samples from Tt % o L =)
Q @ @ /

Update reward using

_/Sa\[‘nples & demos

update Tt w.r.t. reward

Lecture 20 - 121

Guided Cost Learning Algorithm (Finn et al. ICML ’16)

initial human
policy Tt demonstrations

generate policy ®) — DN
samples from Tt % o L =)
Q @ @ /

Update reward using

_/sarnples & demos

update Tt w.r.t. reward
policy t reward r

Lecture 20 - 122

Guided Cost Learning Algorithm (Finn et al. ICML ’16)

initial human
policy Tt demonstrations

generate policy ®) — DN
samples from Tt % o L =)
Q @ @ /

Update reward using

_/sarnples & demos

update Tt w.r.t. reward
policy t reward r

N M
1 1
Vyl~ ~ ;Zlivw“w(ﬂ') TS)~ w; Vyry (7))

J 7 =1

Lecture 20 - 123

Guided Cost Learning Algorithm (Finn et al. ICML ’16)

initial human
policy Tt demonstrations

generate policy ®) e— DN
samples from Tt % o L =)
Q @ @ /

Update reward using

l _/samplel& demos oy — eplrs()

m(7;)
update Tt w.r.t. reward
policy t reward r
1 & 1 =
Vyl ™~ > Vyry(r) — > > w;Vyry(r;)
1=1

§ Wi j=1

Lecture 20-124

Suggested Reading on Inverse RL

Classic Papers:

Abbeel & Ng ICML '04. Apprenticeship Learning via Inverse Reinforcement Learning.
Good introduction to inverse reinforcement learning

Ziebart et al. AAAI '08. Maximum Entropy Inverse Reinforcement Learning. Introduction
to probabilistic method for inverse reinforcement learning

Modern Papers:

Finn et al. ICML "16. Guided Cost Learning. Sampling based method for MaxEnt IRL that
handles unknown dynamics and deep reward functions

Waulfmeier et al. arXiv '16. Deep Maximum Entropy Inverse Reinforcement Learning.
MaxEnt inverse RL using deep reward functions

Ho & Ermon NIPS '16. Generative Adversarial Imitation Learning. Inverse RL method
using generative adversarial networks

Fu, Luo, Levine ICLR "18. Learning Robust Rewards with Adversarial Inverse
Reinforcement Learning

Lecture 20 - 175

