Lecture 15: Game Theory CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science
CIFAR AI Chair at Vector Institute

Outline

- Game Theory
- Normal form games
 - Strictly dominated strategies
 - Pure strategy Nash equilibria
 - Mixed Nash equilibria

Multi-agent Decision Making

- Sequential Decision Making
 - Markov Decision Processes
 - Reinforcement Learning
 - Multi-Armed Bandits

All in single agent environments

- Real world environments: usually more than one agent?
 - Each agent needs to account for other agents' actions/behaviours

Reinforcement Learning

Single agent

Assumption: stationary transition function $P_t(s'|s,a) = P_{t'}(s'|s,a) \ \forall t,t'$

Multiple agents

Non-stationary transition function $P_t(s'|s,a) \neq P_{t'}(s'|s,a)$

Game

- **Game**: Any scenario where outcomes depend on actions of two or more rational and self-interested players
 - Players (Decision Makers)
 - Agents within the game (observe states and take actions)
 - Rational
 - Agents choose their best actions (unless exploring)
 - Self-interested
 - Only care about their own benefits
 - May/May not harm others

Which of these are games?

Atari

Solitaire

Go

Game Theory

• **Game Theory**: Mathematical model of strategic interactions among multiple rational agents in a game

Interaction:

- One agent directly affects other agent(s)
- Reward for one agent depends on other agent(s)

Strategic:

Agents maximize their reward by taking into account their influence (through actions) on the game

Multiple:

At-least two agents

Game Theory Applications

- Auctions
- Diplomacy
- Negotiations
- Sports analytics
- Autonomous Driving
- Conversational agents

Categorization of Games

- Games can be
 - Cooperative: agents have a common goal
 - **Competitive:** agents have conflicting goals
 - Mixed: in between cooperative and competitive (agents have different goals, but they are not conflicting)

Cooperative

Competitive

Normal Form Games

- Set of **agents**: I = 1, 2, ..., N, where $N \ge 2$
- Set of **actions** for each agent: $A_i = \{a_i^1, ..., a_i^m\}$
 - Game outcome is a **strategy profile (joint action)**: $a = (a_1, ..., a_n)$
 - Total space of joint actions: $a \in \{A_1 \times A_2 \times \cdots \times A_N\}$
- **Reward function** for each agent: R_i : A → \Re , where $A = \{A_1 \times A_2 \times \cdots \times A_N\}$
- No state
- Horizon: h = 1

Example: Even or Odd

Examples of strategic games

Baseball or Soccer

Chicken

Cross Turn

Cross Turn

-1,-1	10,0
0,10	5,5

Coordination Game

Anti-Coordination Game

Example: Prisoner's Dilemma

Confess

Don't Confess

-5,-5	0,-10
-10,0	-1,-1

Playing a game

- We now know how to describe a game
- Next step Playing the game!
- Recall, agents are rational
 - Let p_i be agent i's beliefs about what its opponents will do
 - Agent i is rational if it chooses to play a_i^* where

$$\mathbf{a}_{i}^{*} = \operatorname{argmax}_{\mathbf{a}_{i}} \sum_{a_{-i}} R(a_{i}, a_{-i}) p_{i}(a_{-i})$$

Notation:
$$a_{-i} = (a_1, ..., a_{i-1}, a_{i+1}, ..., a_n)$$

Dominated Strategies

• **Definition**: A strategy a_i is *strictly dominated* if

$$\exists a_i', \forall a_{-i}, R_i(a_i, a_{-i}) < R(a_i', a_{-i})$$

- A rational agent will never play a strictly dominated strategy!
 - This allows us to solve some games!

Example: Prisoner's Dilemma

Confess

Confess Don't Confess

Confess

Don't Confess

Strict Dominance does not capture the whole picture

	Α	В	С
A	0,4	4,0	5,3
В	4,0	0,4	5,3
C	3,5	3,5	6,6
·			2,2

What strict dominance eliminations can we do?

Nash Equilibrium

- Sometimes an agent's best-response depends on the strategies other agents are playing
- A strategy profile, (a*), is a **Nash equilibrium** if no agent has incentive to deviate from its strategy *given that* others do not deviate:

$$\forall i, a_i, R_i(a_i^*, a_{-i}^*) \ge R_i(a_i, a_{-i}^*)$$

Nash Equilibrium

• Equivalently, a^* is a Nash equilibrium iff $\forall i \ a_i^* = argmax_{a_i}R_i(a_i, a_{-i}^*)$

_	Α	В	С
A	0,4	4,0	5,3
В	4,0	0,4	5,3
C	3,5	3,5	6,6

(C,C) is a Nash equilibrium because:

$$R_1(C,C) = \max\{R_1(A,C), R_1(B,C), R_1(C,C)\}$$

AND

$$R_2(C,C) = \max\{R_2(C,A), R_2(C,B), R_2(C,C)\}$$

Exercise 1

What are the Nash Equilibria?

Exercise 2

What are the Nash Equilibria? Agent 2

(Mixed) Nash Equilibria

- Mixed strategy σ_i : σ_i defines a probability distribution over A_i
- Strategy profile: $\sigma = (\sigma_1, ..., \sigma_n)$
- Expected utility: $R_i(\boldsymbol{\sigma}) = \sum_a (\prod_j \sigma(a_j)) R_i(a)$
- Nash Equilibrium: σ^* is a (mixed) Nash equilibrium if

$$\forall i \ R_i(\sigma_i^*, \sigma_{-i}^*) \ge R_i(\sigma_i', \sigma_{-i}^*) \ \forall \sigma_i'$$

Finding Mixed Nash Equilibria

- Two players: $\boldsymbol{\sigma} = (\sigma_1, \sigma_2)$
 - Let $p = \sigma_1$ and $q = \sigma_2$
- At the equilibrium:
 - p^* should be best strategy given q^* : $p^* = argmax_p R_1(p, q^*)$
 - q^* should be best strategy given p^* : $q^* = argmax_qR_2(p^*, q)$
- Solve system of equations:

$$\frac{\partial}{\partial p} R_1(p, q) = 0$$

$$\frac{\partial}{\partial q} R_2(p, q) = 0$$

Exercise 2 Revisited

How do we determine p and q?

$$R_{A}(p,q) = 2pq - 3p(1-q) - 3(1-p)q + 4(1-p)(1-q)$$

$$R_{B}(p,q) = -2pq + 3p(1-q) + 3(1-p)q - 4(1-p)(1-q)$$

$$\frac{\partial}{\partial p} R_{A}(p,q) = 12q - 7 \rightarrow q = \frac{7}{12}$$

$$\frac{\partial}{\partial q} R_{B}(p,q) = -12p + 7 \rightarrow p = \frac{7}{12}$$

Exercise 3

strategy Nash equilibria and 1 mixed

strategy Nash equilibrium). Find them.

 $R_{1} = 2.p.q + (1-p)(1-q) \rightarrow \frac{\partial R_{1}}{\partial P} = \frac{2q}{q} + (q-1) = 0$ $R_{2} = P.q + 2(1-p)(1-q)$ $\rightarrow \frac{\partial R_{2}}{\partial q} = P - 2(1-p) = 0 \rightarrow P = \frac{2}{3}$

Mixed Nash Equilibrium

• **Theorem** (Nash 1950):

Every game in which the strategy sets $A_1,...,A_n$ have a finite number of elements has a mixed strategy equilibrium.

John Nash Nobel Prize in Economics (1994)

Other Useful Theorems

Theorem: In an n-player pure strategy game, if iterated elimination of strictly dominated strategies eliminates all but the strategies $(a_1^*,...,a_n^*)$ then these strategies are the unique Nash equilibria of the game

• **Theorem:** Any Nash equilibrium will survive iterated elimination of strictly dominated strategies.

Nash Equilibrium

- Interpretations:
 - Focal points, self-enforcing agreements, stable social convention, consequence of rational inference..
- Criticisms
 - They may not be unique
 - Ways of overcoming this: Refinements of equilibrium concept, Mediation, Learning
 - They may be hard to find
 - People don't always behave based on what equilibria would predict

