Reinforcement Learning Computer Engineering Department Sharif University of Technology

Mohammad Hossein Rohban, Ph.D.

Spring 2025

Courtesy: Some slides are adopted from CS 285 Berkeley, and CS 234

Stanford, and Pieter Abbeel's compact series on RL.

Motivation (cont.) ChatGPT; Why RL?!

Courtesy: OpenAl Blog

Courtesy: J. Alammar, The Illustrated DeepSeek R1

Motivation (cont.)

SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training

Courtesy: T. Chu, et al, SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training, 2025

Play 0:06 - 0:25

History

2013 Atari (DQN) [Deepmind]

2014 2D locomotion (TRPO) [Berkeley]

2015 AlphaGo [Deepmind]

Tian et al, 2016; Maddison et al, 2014; Clark et al, 2015

Atari (DQN) [Deepmind]	Iteration 0
2D locomotion (TRPO) [Berkeley]	
AlphaGo [Deepmind]	
D locomotion (TRPO+GAE) Berkeley]	

[Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

2013	Atari (DQN) [Deepmind]
2014	2D locomotion (TRPO) [Berkeley]
2015	AlphaGo [Deepmind]
2016	3D locomotion (TRPO+GAE) [Berkeley]
2016	Real Robot Manipulation (GPS) [Berkeley]

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

History

- 2013 Atari (DQN) [Deepmind]
- 2014 2D locomotion (TRPO) [Berkeley]

2015 AlphaGo [Deepmind]

- 2016 3D locomotion (TRPO+GAE) [Berkeley]
- 2016 Real Robot Manipulation (GPS) [Berkeley, Google]

2017 Dota2 (PPO) [OpenAl]

OpenAl Dota Bot beat best humans 1:1 (Aug 2018)

- 2013 Atari (DQN) [Deepmind]
- 2014 2D locomotion (TRPO) [Berkeley]
- 2015 AlphaGo [Deepmind]
- 2016 3D locomotion (TRPO+GAE) [Berkeley]
- 2016 Real Robot Manipulation (GPS) [Berkeley, Google]
- 2017 Dota2 (PPO) [OpenAl]
- 2018 DeepMimic [Berkeley]

[Peng, Abbeel, Levine, van de Panne, 2018]

History

- 2013 Atari (DQN) [Deepmind]
- 2014 2D locomotion (TRPO) [Berkeley]
- 2015 AlphaGo [Deepmind]
- 2016 3D locomotion (TRPO+GAE) [Berkeley]
- 2016 Real Robot Manipulation (GPS) [Berkeley, Google]
- 2017 Dota2 (PPO) [OpenAl]
- 2018 DeepMimic [Berkeley]
- 2019 AlphaStar [Deepmind]

Percentile

2013	Atari (DQN)
	[Deepmind]
2014	2D locomotion (TRPO) [Berkeley]
2015	AlphaGo [Deepmind]
2016	3D locomotion (TRPO+GAE) [Berkeley]
2016	Real Robot Manipulation (GPS) [Berkeley, Google]
2017	Dota2 (PPO) [OpenAl]
2018	DeepMimic [Berkeley]
2019	AlphaStar [Deepmind]
2019	Rubik's Cube (PPO+DR)

[OpenAl]

Let's Begin: Markov Decision Processes (MDPs)

An MDP is defined by:

- Set of states S
- Set of actions A
- Transition function P(s' | s, a)
- Reward function R(s, a, s')
- Start state s₀
- Discount factor γ
- Horizon H

 \odot

15

Sometimes the policy could be stochastic: $\pi : S \times A \rightarrow [0,1]$, which is $\pi(a|s) = \Pr(A_t = a|S_t = s).$

Example: Grid World

An MDP is defined by:

- Set of states S
- Set of actions A
- Transition function P(s' | s, a)
- Reward function R(s, a, s')
- Start state s₀
- Discount factor γ
- Horizon H

Partially Observable MDPs (POMDPs)

• Often times the state S_t is hidden from the agent,

and only noisy or incomplete measurement of it is available O_t.

= sum of discounted rewards when starting from state s and acting optimally

Optimal Value Function

$$V^*(s) = \max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s\right]$$

= sum of discounted rewards when starting from state s and acting optimally

Let's assume: \Rightarrow noise = 0actions deterministically successful, gamma = 1, H = 100 V*(4,3) = $V^*(3,3) = V^*(2,3) = V^*(1,1) = V^*(4,2) = -V^*(4,2) = -V^*(4,$

Optimal Value Function

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

= sum of discounted rewards when starting from state s and acting optimally

Let's assume: actions deterministically successful, gamma = 0.9, H = 100 $V^*(4,3) = 1$ $V^*(3,3) = 0.9$ $V^*(2,3) = 0.9$ $V^*(1,1) = (0.9)$ $V^*(4,2) = -1$

Optimal Value Function

$$V^{*}(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^{t} R(s_{t}, a_{t}, s_{t+1}) \mid \pi, s_{0} = s \right]$$

= sum of discounted rewards when starting from state s and acting optimally

Let's assume:
actions successful w/probability 0.8, gamma = 0.9, H = 100

$$/*(4,3) = 1$$

 $/*(3,3) = (0.80 [0.9 \times 1] + 0.1 [0.1] + 6.1 [0.9]]$
 $/*(2,3) = 1$
 $/*(1,1) = 1$
 $/*(4,2) = 1$

24

0