Reinforcement Learning Computer Engineering Department Sharif University of Technology

Mohammad Hossein Rohban, Ph.D.

Spring 2025

Courtesy: Some slides are adopted from CS 285 Berkeley, and CS 234

Stanford, and Pieter Abbeel's compact series on RL.

Value Function

 V*(s) = expected utility starting in s, and acting optimally in all subsequent actions.

$$V^*(s) = \max_{a'_i s} \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1}) \middle| s_0 = s\right)$$

• $V_0^*(s)$ = optimal value for state s when H=0

•
$$V_0^*(s) = 0 \quad \forall s$$

• $V_1^*(s)$ = optimal value for state s when H=1

•
$$V_1^*(s) = \max_a \sum_{s'} P(s'|s, a)(R(s, a, s') + \gamma V_0^*(s'))$$

• $V_2^*(s) = \text{optimal Value for state s when H=2}$
• $V_2^*(s) = \max_a \sum_{s'} P(s'|s, a)(R(s, a, s') + \gamma V_1^*(s'))$
• $V_k^*(s) = \text{optimal Value for state s when H = k}$
• $V_k^*(s) = \max_a \sum_{s'} P(s'|s, a)(R(s, a, s') + \gamma V_{k-1}^*(s'))$

Algorithm:

Start with $V_0^*(s) = 0$ for all s.

For k = 1, ... , H:

For all states s in S:

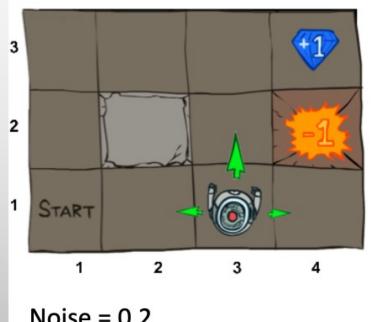
$$V_{k}^{*}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^{*}(s') \right)$$
$$\pi_{k}^{*}(s) \leftarrow \arg\max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^{*}(s') \right)$$

This is called a value update or Bellman update/back-up

4

$$V_0(s) \leftarrow 0$$

k = 0

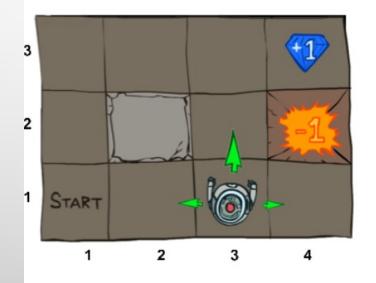


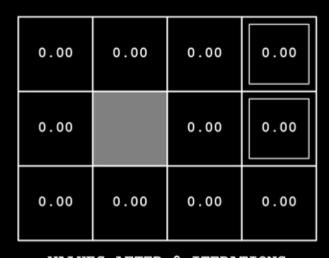
0.00	0.00	0.00	0.00		
0.00		0.00	0.00		
0.00	0.00	0.00	0.00		
VALUE	S AFTER	VALUES AFTER 0 ITERATIONS			

Noise = 0.2 Discount = 0.9 5

$$V_1(s) \leftarrow \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_0(s'))$$

k = 0

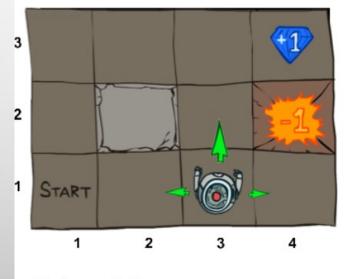




VALUES AFTER 0 ITERATIONS

$$V_2(s) \leftarrow \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1(s'))$$

k = 1



0.00	0.00	0.00	1.00
0.00		0.00	-1.00
0.00	0.00	0.00	0.00
VALUES AFTER 1 ITERATIONS			

Noise = 0.2 Discount = 0.9

$$V_2(s) \leftarrow \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1(s'))$$

k = 2

0.00	0.00	0.72	1.00	
0.00		0.00	-1.00	
0.00	0.00	0.00	0.00	
VALU	VALUES AFTER 2 ITERATIONS			

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 3

0.00	0.52	0.78	1.00
0.00		0.43	-1.00
0.00	0.00	0.00	0.00
VALUES AFTER 3 ITERATIONS			

Noise = 0.2 Discount = 0.9

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 4

0.37	0.66	0.83	1.00	
0.00		0.51	-1.00	
0.00	0.00	0.31	0.00	
VALUE	VALUES AFTER 4 ITERATIONS			

Noise = 0.2 Discount = 0.9

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 5

0.51	0.72	0.84	1.00
0.27		0.55	-1.00
0.00	0.22	0.37	0.13
VALU	ES AFTER	5 ITERA	TIONS

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 6

0.59	0.73	0.85	1.00	
0.41		0.57	-1.00	
0.21	0.31	0.43	0.19	
VALUE	VALUES AFTER 6 ITERATIONS			

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 7

0.62	0.74	0.85	1.00	
0.50		0.57	-1.00	
0.34	0.36	0.45	0.24	
VALUE	VALUES AFTER 7 ITERATIONS			

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 8

0.63	0.74	0.85	1.00
0.53		0.57	-1.00
0.42	0.39	0.46	0.26
VALUE	IS AFTER	8 ITERA	TIONS

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 9

0.64	0.74	0.85	1.00
0.55		0.57	-1.00
0.46	0.40	0.47	0.27
VALUE	ES AFTER	9 ITERA	TIONS

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 10

0.64	0.74	0.85	1.00
0.56		0.57	-1.00
0.48	0.41	0.47	0.27
VALUES AFTER 10 ITERATIONS			

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 11

0.64	0.74	0.85	1.00
0.56		0.57	-1.00
0.48	0.42	0.47	0.27
VALUE	S AFTER	11 ITERA	TIONS

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 12

0.64	0.74	0.85	1.00	
0.57		0.57	-1.00	
0.49	0.42	0.47	0.28	
VALUES AFTER 12 ITERATIONS				

Noise = 0.2 Discount = 0.9

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

k = 100

0.64	0.74	0.85	1.00	
0.57		0.57	-1.00	
0.49	0.43	0.48	0.28	
VALUES AFTER 100 ITERATIONS				

Q-Values

Q*(s, a) = expected utility starting in s, taking action a, and (thereafter) acting optimally

$$V^*(s) = \max_{a'} Q^*(s, a')$$

• Bellman Equation: $Q^*(s,a) = \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q^*(s',a'))$

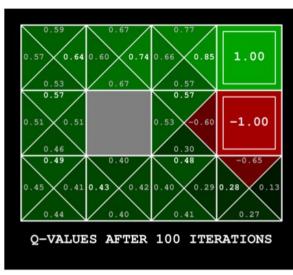
• Q-value Iteration:

$$Q_{k+1}^*(s, a) \leftarrow \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma \max_{a'} Q_k^*(s', a'))$$

20

$$Q_{k+1}^*(s,a) \leftarrow \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q_k^*(s',a'))$$

k = 100



Policy Evaluation

• Recall value iteration:

$$V_k^*(s) \leftarrow \max_a \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

Policy evaluation for a given $\pi(s)$:

$$V_k^{\pi}(s) \leftarrow \sum_{s'} P(s'|s, \pi(s))(R(s, \pi(s), s') + \gamma V_{k-1}^{\pi}(s))$$

At convergence:

$$\forall s \ V^{\pi}(s) \leftarrow \sum_{s'} P(s'|s, \pi(s))(R(s, \pi(s), s') + \gamma V^{\pi}(s))$$

Policy Iteration

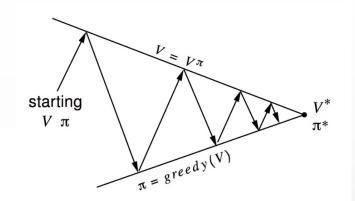
- One iteration of policy iteration
 - Policy evaluation for current policy π_k :
 - Iterate until convergence

 $V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} P(s'|s, \pi_k(s)) \left[R(s, \pi(s), s') + \gamma V_i^{\pi_k}(s') \right]$

 Policy improvement: find the best action according to one-step look-ahead

 $\pi_{k+1}(s) \leftarrow \arg\max_{a} \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma V^{\pi_k}(s') \right]$

- Repeat until policy converges
 - At convergence: optimal policy; and converges faster than value iteration under some conditions



One-step look ahead improves the policy

- Consider an alternative policy $\pi_{(k+1)}^{(1)}(t,s)$ that takes the prescribed actions in $\pi_{k+1}(s)$ only at time t = 0; and stays the same as $\pi_k(s)$ in later times.
- The value function V(s) for this new time-dependent policy is larger than or equal to V(s) for the original policy $\pi_k(s)$ for all s. Why?
- Now let $\pi_{(k+1)}^{(2)}(t,s)$, which takes the prescribed action in $\pi_{k+1}(s)$ only at times t = 0 and t = 1, and stays the same as $\pi_k(s)$ in later times.
- Similarly, V(s) gets improved for $\pi^{(2)}_{(k+1)}(t,s)$ compared to $\pi^{(1)}_{(k+1)}(t,s)$ for all s.

24

• Repeating this argument $\pi_{(k+1)}^{(\infty)}(t,s)$ becomes the same as $\pi_{k+1}(s)$.

An Example

Let this be the initial policy π_0 , show how policy improvement, makes this policy better.

+1	\rightarrow	+1
-1	Ť	-1
-1	\rightarrow	-1
-1	Ť	-1
-1	\leftarrow	-1
-1	Ŷ	-1
-1	\rightarrow	-1

Planning vs. Learning

- Assumed to have access to the dynamics P(s'|s, a).
- We don't have access to this in the real world.
- We need to estimate (or learn) the value functions.

$$Q^*(s,a) = \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q^*(s',a'))$$

Monte-Carlo Prediction

27

Monte Carlo Methods - Introduction

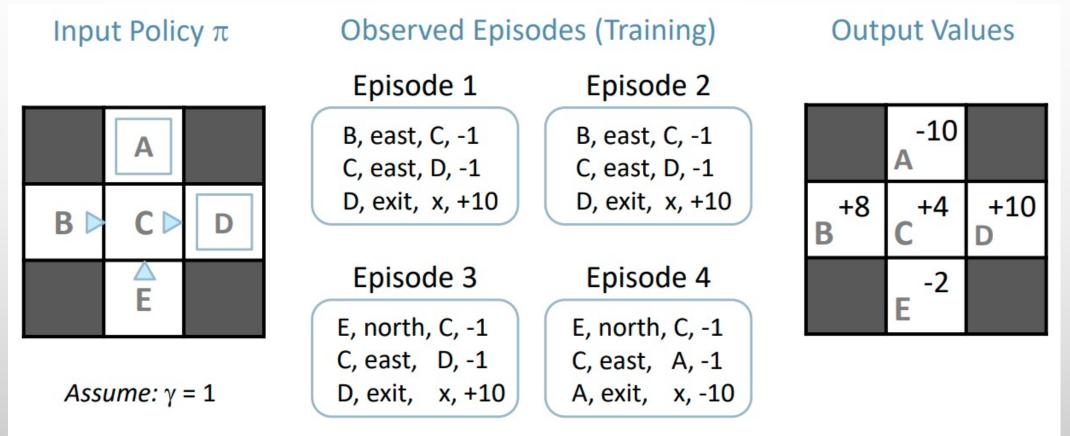
- Experience samples to learn without a model
- MC methods require only experience— sample sequences of states, actions, and rewards from actual or simulated interaction with an environment.
- We can learn with samples: episodes!

Monte-Carlo prediction

- Suppose we wish to estimate $V_{\pi}(s)$, the value of a state s under policy π .
- The first-visit mc method estimates $V_{\pi}(s)$ as the average of the returns following first visits to s.

```
First-visit MC prediction, for estimating V \approx v_{\pi}
Input: a policy \pi to be evaluated
Initialize:
     V(s) \in \mathbb{R}, arbitrarily, for all s \in S
     Returns(s) \leftarrow an empty list, for all <math>s \in S
Loop forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:
              Append G to Returns(S_t)
              V(S_t) \leftarrow \operatorname{average}(Returns(S_t))
```

Episodes: another example



Every Visit Monte-Carlo Policy

Initialize N(s) = 0, $G(s) = 0 \forall s \in S$ Loop

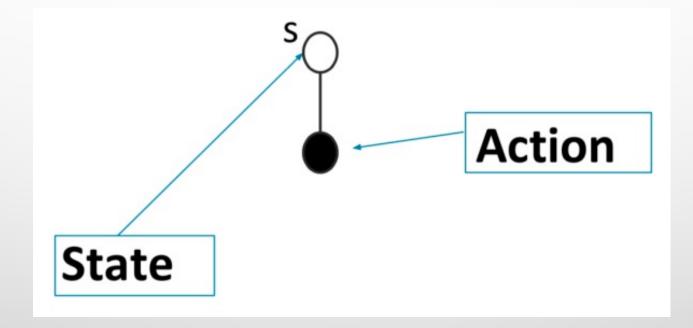
- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i 1} r_{i,T_i}$ as return from time step *t* onwards in *i*th episode
- For each time step t until T_i (the end of the episode i)
 - state s is the state visited at time step t in episodes i
 - Increment counter of total visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

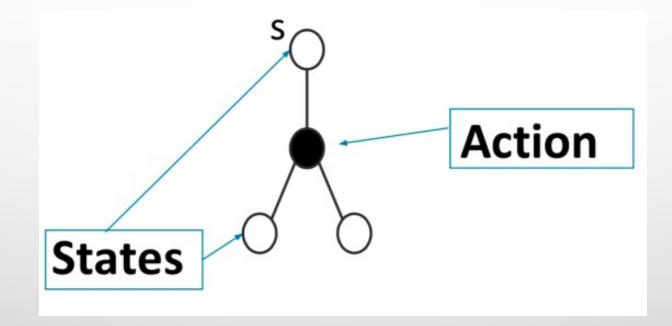
Incremental Monte-Carlo Policy

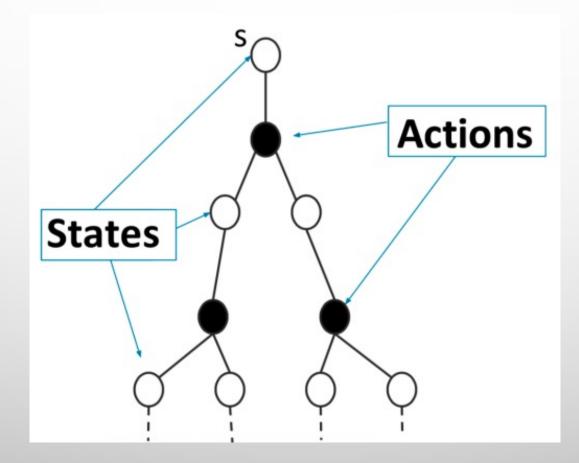
After each episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$

- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots$ as return from time step t onwards in *i*th episode
- For state s visited at time step t in episode i
 - Increment counter of total visits: N(s) = N(s) + 1
 - Update estimate

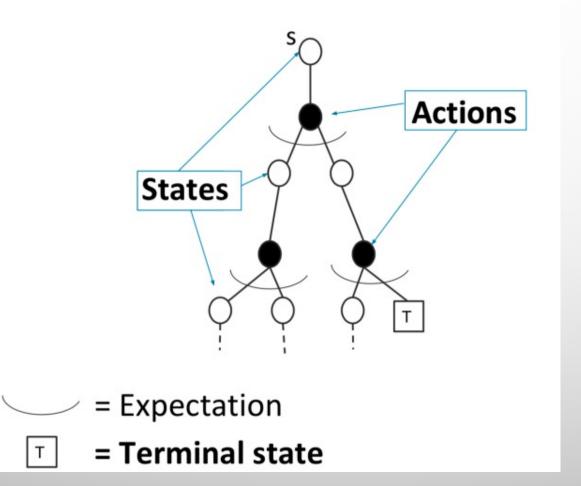
$$V^{\pi}(s) = V^{\pi}(s) rac{N(s)-1}{N(s)} + rac{G_{i,t}}{N(s)} = V^{\pi}(s) + rac{1}{N(s)}(G_{i,t} - V^{\pi}(s))$$







 $V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$



$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

