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Value Function

* V*(s) = expected utility starting in s, and acting optimally in all subsequent

SO—S>

actions.

v (S) — maX IE (2 th(St, at, St+1)



Value lteration

V5 (s) =optimal value for state s when H=0
" Vo(s) =0 Vs

V*(s) =optimal value for state s when H=1

" Vi(s) =max ) P(s'|s,a)(R(s,a,5') +7V5'(s))

Vi (s) = optimal Value for state s when H=2

" Vi(s) =maxy P(s'|s,a)(R(s,a, ') + V()
Vi (s) = optimal value for state s when H = k

Vi (8) = max > P(s'ls,a)(R(s,a,8") +7Vi_y(s))



Value lteration

Algorithm:

Start with Vo' (s) =0 for all s.
Fork=1, ..., H:

For all states s in S:

ViE(s) + mgxz P(s'|s,a) (R(s,a,s") +yVi_1(s"))

7, (8) < arg maxz P(s'|s,a) (R(s,a,s") +YVi_1(5))

This is called a value update or Bellman update/back-up



Value lteration

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9



Value lteration

Vi(s) < max Z P(s'|s,a)(R(s,a,s") +vVo(s"))

VALUES AFTER 0 ITERATIONS

Noise =0.2
Discount = 0.9



Value lteration

Va(s) < max Z P(s'|s,a)(R(s,a,s’) +vV1(s"))

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9



Value lteration

VALUES AFTER 2 ITERATIONS

Noise =0.2
Discount = 0.9



Value lteration

Vk—l—l (3) S mg“x Z P(Sllsv a) (R(Sa a, 3/) + 7Vk(8/))

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9



Noise =0.2
Discount = 0.9

Value lteration

Vitr1(8) mngP(s'|s, a)(R(s,a,s") +vVi(s"))

VALUES AFTER 4 ITERATIONS
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Noise = 0.2
Discount = 0.9

Value lteration

Vit (s) « max 3 P(']s, a) (R(s, 0, 5') + 1Vi(s"))

VALUES AFTER 5 ITERATIONS
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Noise =0.2
Discount = 0.9

Value lteration

Vit1(s) <~ max ) P(s'|s, a)(R(s,a, ") +7Vi(s))

VALUES AFTER 6 ITERATIONS
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Noise =0.2
Discount = 0.9

Value lteration

Vit1(s) ¢ max )  P(s'|s, a)(R(s, a,8") +7Vi(s"))

k=7

VALUES AFTER 7 ITERATIONS
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Noise =0.2
Discount = 0.9

Value lteration

Vit1(s) « max Y P(s'|s,a)(R(s,a,8) + 7Vi(s))

a

VALUES AFTER 8 ITERATIONS

14



Noise = 0.2
Discount = 0.9

Value lteration

Vir1(s) ¢ max »  P(s'|s,a)(R(s,a,s") + YVi(s))

a

VALUES AFTER 9 ITERATIONS
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Noise =0.2
Discount =0.9

Value lteration

Vit1(s) = max Y  P(s'|s,a)(R(s, a,s") + Vi (s"))

VALUES AFTER 10 ITERATIONS
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Noise = 0.2
Discount = 0.9

Value lteration

Vit1(s) maXZP(S,IS, a)(R(s,a,s) +~yVi(s"))

a

VALUES AFTER 11 ITERATIONS
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Noise = 0.2
Discount = 0.9

Value lteration

Viers (5) = max Y P(sls, @) (B(s, 0, ) +7Vi(s)

k=12

VALUES AFTER 12 ITERATIONS
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Noise =0.2
Discount =0.9

Value lteration

Vit1(8) < mﬁxz P(s'|s,a)(R(s,a,s") +vVi(s))

k=100

VALUES AFTER 100 ITERATIONS
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Q-Values

* Q*(s,a) = expected utility starting in s, taking action a, and (thereafter) acting
optimally
V*(s) = maxQ*(s,a’)
a

saBeliman Equation: — % (g ;) — Z P(s'|s,a)(R(s,a,s") +ymax Q*(s',a’))

* Q-value lteration:

Qrt1(s,0) < ) P(s']s,a)(R(s, 0, ) +ymax Q;(s', a))
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Q-Value lteration

Qry1(s,0) < ) P(s|s,a)(R(s,a,s) + ymax Qi(s',a’))




Policy Evaluation

m Recall value iteration:
Vi (s) < max Y ~ P(s'|s,a) (R(s,a,s") + yVi_1(s))

m Policy evaluation for a given 7'('(3) :
Vi (s) < > P(s'|s, () (R(s,m(s), s") + vVi_1(s))

At convergence:

Vs V7(s) « Z P(s'|s,m(s))(R(s,m(s),s") +vV™(s))
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Policy Iteration

* One iteration of policy iteration

m Policy evaluation for current policy 7T :

= Iterate until convergence

VI (s) = D P(s'|s, mi(s)) [R(s,7(s), 8) +yV;™ (s')]

m Policy improvement: find the best action according to one-step
look-ahead

met1(s) ¢ argmax Y  P(s'|s,a) [R(s,a,s") + YV ™ (s)]

* Repeat until policy converges

* At convergence: optimal policy; and converges faster than value iteration under some conditions

starting
Vr
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One-step look ahead improves the policy

(1)

* Consider an alternative policy T (k+1) (t,s) that takes the prescribed actions in

Tr+1(S) only at time t = 0; and stays the same as 1w (s) in later times.

* The value function V(s) for this new time-dependent policy is larger than or equal

to V(s) for the original policy m;(s) for all s. Why?

* Now let T

(2)
(k+1)

(t,s), which takes the prescribed action in ;4 1(s) only at times t

=0 and t =1, and stays the same as Ty (s) in later times.

(2) (1)

* Similarly, V(s) gets improved for 7.7 1y (t,s) compared to T (k41) (t,s) for all s.
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* Repeating this argument 7y, 1y (t,s) becomes the same as 41 (S).



An Example

Let this be the initial policy 1, show how policy improvement, makes this policy better.
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Planning vs. Learning

* Assumed to have access to the dynamics P(s’|s, a).
* We don’t have access to this in the real world.

* We need to estimate (or learn) the value functions.

Q*(s,a) = ) P(s'ls,a)(R(s,a,5") + ymax Q*(s', a"))

26



Monte-Carlo Prediction




Monte Carlo Methods - Introduction

Experience samples to learn without a model

MC methods require only experience— sample sequences of states, actions, and rewards from

actual or simulated interaction with an environment.

We can learn with samples: episodes!

We don’t have access to

P(s'|s,a)

T

Model Free Learning!
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Monte-Carlo prediction

Suppose we wish to estimate V_(s), the value of a state s under policy .

The first-visit me method estimates V,.(s) as the average of the returns following first visits to s.

First-visit MC prediction, for estimating V =~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1,51,A1,Ra,...,S7-1,Ar—1, R
G+ 0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G + vG + Rt
Unless S; appears in Sp, S1,...,St—1:
Append G to Returns(S:)
V(S:) < average(Returns(St))
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Input Policy &

Assume:y=1

Observed Episodes (Training)

Episode 1

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 3

E, north, C, -1
C,east, D, -1
D, exit, x, +10

Episode 2

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 4

E, north, C, -1
C, east, A, -1
A, exit, x,-10

Episodes: another example
Output Values
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Every Visit Monte-Carlo Policy

Initialize N(s) =0, G(s) =0Vse S

Loop

@ Sample episode i = Sj1,8i1,i.1,51,2,3i2,Fi2y---5Si.T,

® Define G;: = ;¢ + i ¢11 + ’Yzfi,t+2 i M

Ti=1r 1 as return from time

step t onwards in ith episode

@ For each time step t until T; ( the end of the episode /)

state s is the state visited at time step t in episodes |
Increment counter of total visits: N(s) = N(s) + 1
Increment total return G(s) = G(s) + G;;

Update estimate V™ (s) = G(s)/N(s)
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Incremental Monte-Carlo Policy
After each episode i = s; 1,31, i1,5.2,3i.2, 125

® Define G;; =r;;: +7ri 41 + vzr,-,Hz + --- as return from time step t
onwards in /th episode

@ For state s visited at time step t in episode |

@ Increment counter of total visits: N(s) = N(s) + 1
e Update estimate
Gi,t o 1

N(S) =51 n _ \/W(S) + —(Gi,t T VW(S))

VIS = VIO NG T NG
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Policy Evaluation Diagram

S
" @~ Action
o

State |
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Policy Evaluation Diagram

— Action
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Policy Evaluation Diagram
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Policy Evaluation Diagram

V™(s) = V"(s) + a(Gj+ — V"(s))

—Actions |

iStétes g

.~ = Expectation

T

= Terminal state
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Policy Evaluation Diagram

V(s) = V™(s) + a(Gj+ — V7(s))

MC updates the value estimate
using a sample of the return to
approximate an expectation

S

Actions

States

.~ = Expectation
7| =Terminal state
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