-4 B

'
N’

Reinforcement Learning
Computer Engineering Department
Sharif University of Technology

Mohammad Hossein Rohban, Ph.D.

Spring 2025 "’ ——

Courtesy: Some slides are adopted from CS 285 Berkeley, and TS 234
Stanford, and Pieter AbbeeRs.tompact series on RL.

N’ .

Value Function

* V*(s) = expected utility starting in s, and acting optimally in all subsequent

SO—S>

actions.

v (S) — maX IE (2 th(St, at, St+1)

Value lteration

V5 (s) =optimal value for state s when H=0
" Vo(s) =0 Vs

V*(s) =optimal value for state s when H=1

" Vi(s) =max) P(s'|s,a)(R(s,a,5') +7V5'(s))

Vi (s) = optimal Value for state s when H=2

" Vi(s) =maxy P(s'|s,a)(R(s,a, ') + V()
Vi (s) = optimal value for state s when H = k

Vi (8) = max > P(s'ls,a)(R(s,a,8") +7Vi_y(s))

Value lteration

Algorithm:

Start with Vo' (s) =0 for all s.
Fork=1, ..., H:

For all states s in S:

ViE(s) + mgxz P(s'|s,a) (R(s,a,s") +yVi_1(s"))

7, (8) < arg maxz P(s'|s,a) (R(s,a,s") +YVi_1(5))

This is called a value update or Bellman update/back-up

Value lteration

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9

Value lteration

Vi(s) < max Z P(s'|s,a)(R(s,a,s") +vVo(s"))

VALUES AFTER 0 ITERATIONS

Noise =0.2
Discount = 0.9

Value lteration

Va(s) < max Z P(s'|s,a)(R(s,a,s’) +vV1(s"))

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9

Value lteration

VALUES AFTER 2 ITERATIONS

Noise =0.2
Discount = 0.9

Value lteration

Vk—l—l (3) S mg“x Z P(Sllsv a) (R(Sa a, 3/) + 7Vk(8/))

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9

Noise =0.2
Discount = 0.9

Value lteration

Vitr1(8) mngP(s'|s, a)(R(s,a,s") +vVi(s"))

VALUES AFTER 4 ITERATIONS

10

Noise = 0.2
Discount = 0.9

Value lteration

Vit (s) « max 3 P(']s, a) (R(s, 0, 5') + 1Vi(s"))

VALUES AFTER 5 ITERATIONS

11

Noise =0.2
Discount = 0.9

Value lteration

Vit1(s) <~ max) P(s'|s, a)(R(s,a, ") +7Vi(s))

VALUES AFTER 6 ITERATIONS

12

Noise =0.2
Discount = 0.9

Value lteration

Vit1(s) ¢ max) P(s'|s, a)(R(s, a,8") +7Vi(s"))

k=7

VALUES AFTER 7 ITERATIONS

13

Noise =0.2
Discount = 0.9

Value lteration

Vit1(s) « max Y P(s'|s,a)(R(s,a,8) + 7Vi(s))

a

VALUES AFTER 8 ITERATIONS

14

Noise = 0.2
Discount = 0.9

Value lteration

Vir1(s) ¢ max » P(s'|s,a)(R(s,a,s") + YVi(s))

a

VALUES AFTER 9 ITERATIONS

15

Noise =0.2
Discount =0.9

Value lteration

Vit1(s) = max Y P(s'|s,a)(R(s, a,s") + Vi (s"))

VALUES AFTER 10 ITERATIONS

16

Noise = 0.2
Discount = 0.9

Value lteration

Vit1(s) maXZP(S,IS, a)(R(s,a,s) +~yVi(s"))

a

VALUES AFTER 11 ITERATIONS

17

Noise = 0.2
Discount = 0.9

Value lteration

Viers (5) = max Y P(sls, @) (B(s, 0,) +7Vi(s)

k=12

VALUES AFTER 12 ITERATIONS

18

Noise =0.2
Discount =0.9

Value lteration

Vit1(8) < mﬁxz P(s'|s,a)(R(s,a,s") +vVi(s))

k=100

VALUES AFTER 100 ITERATIONS

19

Q-Values

* Q*(s,a) = expected utility starting in s, taking action a, and (thereafter) acting
optimally
V*(s) = maxQ*(s,a’)
a

saBeliman Equation: — % (g ;) — Z P(s'|s,a)(R(s,a,s") +ymax Q*(s',a’))

* Q-value lteration:

Qrt1(s,0) <) P(s']s,a)(R(s, 0,) +ymax Q;(s', a))

20

Q-Value lteration

Qry1(s,0) <) P(s|s,a)(R(s,a,s) + ymax Qi(s',a’))

Policy Evaluation

m Recall value iteration:
Vi (s) < max Y ~ P(s'|s,a) (R(s,a,s") + yVi_1(s))

m Policy evaluation for a given 7'('(3) :
Vi (s) < > P(s'|s, () (R(s,m(s), s") + vVi_1(s))

At convergence:

Vs V7(s) « Z P(s'|s,m(s))(R(s,m(s),s") +vV™(s))

22

Policy Iteration

* One iteration of policy iteration

m Policy evaluation for current policy 7T :

= Iterate until convergence

VI (s) = D P(s'|s, mi(s)) [R(s,7(s), 8) +yV;™ (s')]

m Policy improvement: find the best action according to one-step
look-ahead

met1(s) ¢ argmax Y P(s'|s,a) [R(s,a,s") + YV ™ (s)]

* Repeat until policy converges

* At convergence: optimal policy; and converges faster than value iteration under some conditions

starting
Vr

23

One-step look ahead improves the policy

(1)

* Consider an alternative policy T (k+1) (t,s) that takes the prescribed actions in

Tr+1(S) only at time t = 0; and stays the same as 1w (s) in later times.

* The value function V(s) for this new time-dependent policy is larger than or equal

to V(s) for the original policy m;(s) for all s. Why?

* Now let T

(2)
(k+1)

(t,s), which takes the prescribed action in ;4 1(s) only at times t

=0 and t =1, and stays the same as Ty (s) in later times.

(2) (1)

* Similarly, V(s) gets improved for 7.7 1y (t,s) compared to T (k41) (t,s) for all s.

24

(c0)

* Repeating this argument 7y, 1y (t,s) becomes the same as 41 (S).

An Example

Let this be the initial policy 1, show how policy improvement, makes this policy better.

25

Planning vs. Learning

* Assumed to have access to the dynamics P(s’|s, a).
* We don’t have access to this in the real world.

* We need to estimate (or learn) the value functions.

Q*(s,a) =) P(s'ls,a)(R(s,a,5") + ymax Q*(s', a"))

26

Monte-Carlo Prediction

Monte Carlo Methods - Introduction

Experience samples to learn without a model

MC methods require only experience— sample sequences of states, actions, and rewards from

actual or simulated interaction with an environment.

We can learn with samples: episodes!

We don’t have access to

P(s'|s,a)

T

Model Free Learning!

28

Monte-Carlo prediction

Suppose we wish to estimate V_(s), the value of a state s under policy .

The first-visit me method estimates V,.(s) as the average of the returns following first visits to s.

First-visit MC prediction, for estimating V =~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1,51,A1,Ra,...,S7-1,Ar—1, R
G+ 0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G + vG + Rt
Unless S; appears in Sp, S1,...,St—1:
Append G to Returns(S:)
V(S:) < average(Returns(St))

29

Input Policy &

Assume:y=1

Observed Episodes (Training)

Episode 1

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 3

E, north, C, -1
C,east, D, -1
D, exit, x, +10

Episode 2

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 4

E, north, C, -1
C, east, A, -1
A, exit, x,-10

Episodes: another example
Output Values

30

Every Visit Monte-Carlo Policy

Initialize N(s) =0, G(s) =0Vse S

Loop

@ Sample episode i = Sj1,8i1,i.1,51,2,3i2,Fi2y---5Si.T,

® Define G;: = ;¢ + i ¢11 + ’Yzfi,t+2 i M

Ti=1r 1 as return from time

step t onwards in ith episode

@ For each time step t until T; (the end of the episode /)

state s is the state visited at time step t in episodes |
Increment counter of total visits: N(s) = N(s) + 1
Increment total return G(s) = G(s) + G;;

Update estimate V™ (s) = G(s)/N(s)

31

Incremental Monte-Carlo Policy
After each episode i = s; 1,31, i1,5.2,3i.2, 125

® Define G;; =r;;: +7ri 41 + vzr,-,Hz + --- as return from time step t
onwards in /th episode

@ For state s visited at time step t in episode |

@ Increment counter of total visits: N(s) = N(s) + 1
e Update estimate
Gi,t o 1

N(S) =51 n _ \/W(S) + —(Gi,t T VW(S))

VIS = VIO NG T NG

32

Policy Evaluation Diagram

S
" @~ Action
o

State |

33

Policy Evaluation Diagram

— Action

34

Policy Evaluation Diagram

35

Policy Evaluation Diagram

V™(s) = V"(s) + a(Gj+ — V"(s))

—Actions |

iStétes g

.~ = Expectation

T

= Terminal state

36

Policy Evaluation Diagram

V(s) = V™(s) + a(Gj+ — V7(s))

MC updates the value estimate
using a sample of the return to
approximate an expectation

S

Actions

States

.~ = Expectation
7| =Terminal state

37

