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Disadvantages of Monte-Carlo Learning

We have seen MC algorithms can be used to learn value predictions

But when episodes are long, learning can be slow

we have to wait until an episode ends before we can learn...

return can have high variance
Which one is more? First-visit or every-visit

Are there alternatives? (Spoiler: yes)
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Monte Carlo Control
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Monte-Carlo Control

Repeat:

Sample episode 1, ..., k, ..., using m: {S1,A{, Ry, ..., Sy}~ T

For each state S; and action A, in the episode:

q(St, Ar) — q(S1, Ar) + a;: (Gt — q(S1, Ar))

e.g.,
1

" N(S,, Ay)

Q; of a;=1/k

Improve policy based on new action-value function

n"%(s) = argmaxq(s,a)
a€eA
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Any issue?

Let’s consider this example:
Discount = 1, start in state H.

A B C D E F G H I J

r=10 N N — - — T - - r=1
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Epsilon Greedy Policy

- Simple idea to balance exploration and achieving rewards
Let |A| be the number of actions
- Then an e-greedy policy w.r.t a state action value Q(s,a) is

m(als) =

€

o @' # argmax Q(s,a) w. prob TAT
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Does this hurt improvement?

For any e-greedy policy ;, the e-greedy policy w.r.t. Q™ , w1 is a
monotonic improvement V7i+1 > V7
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Monte-Carlo Control (done right)

Repeat:

Sample episode 1, ..., k, ..., using m: {S1,A{, Ry, ..., Sy}~ T

For each state S; and action A, in the episode:

q(St, Ar) — q(S1, Ar) + a;: (Gt — q(S1, Ar))

e.g.,
1

" N(S,, Ay)

Q; of a;=1/k

Improve policy based on new action-value function

m(als) =
o arg max, Q(s,a), w. prob 1 —e+ ﬁ
o & # argmax Q(s,a) w. prob g
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Disadvantages of MC Learning

* We have seen MC algorithms can be used to learn value
predictions

 But when episodes are long, learning can be slow

* ...we have to wait until an episode ends before we can learn
* ...return can have high variance

* Are there alternatives? (Yes)
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Temporal Difference Learning

Prediction
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TD methods learn directly from episodes of experience
TD is model-free: no knowledge of MDP transitions / rewards
TD learns from incomplete episodes, by bootstrapping

TD updates a guess towards a guess

Lecture 4 - 11



Temporal Difference Learning by Sampling Bellman Equations

 Bellman update equations:
Vik+1(8) = E[Res1 + yvi(Se+1) | S¢ = 5, Ar ~ 7(Sy)]

 We can sample this!
Ve+1(Sr) = Rev1 + yve(St41)

 Samples could be averaged, in a similar way to MC:

Ve+1(Sr) = ve(Sy) + @ | Rev1 + yve(Ses1) —vi(St)

—

target
N ——— e

temporal difference error 0;
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Temporal Difference Learning

* Prediction setting: learn v, online from experience under policy 1t

* Monte Carlo
* Update value v, (5;) towards sampled return G;

Vi+1(8t) = va(St) + @ (G — vu(Sy))
* TD Learning
* Update value v;(S;) towards estimated return Ryyq + yv(S¢41)

( TD error \

-,

Ve+1(St) «— ve(Se) + @ | Res1 + yve(Se41) —ve(Sy)

| target )
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Backup (Dynamic Programming)

S v(S;)  E[Res1 +yv(Ss1) | A ~ 7(S;)]
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Backup (Monte Carlo)

v(S;) — v(S:) + a (G, —v(S;))
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Backup (Temporal Difference)
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Bootstrapping and Sampling

 Bootstrapping: update involves an estimate

* MC does not bootstrap
* DP bootstraps
* TD bootstraps

 Sampling: update samples an expectation
* MCsamples
* DP does not sample
* TD samples
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TD Learning for action values

 We can apply the same idea to action values
 Temporal-difference learning for action values:

* Update value q;(S;, A¢) towards estimated return Ry+1 + ¥q(St+1, Ar41)

( TD error \

o

qr+1(St, Ar) — qr(St, A) + | Rev1 + ¥ qe(St+15 A +1) —q1 (St Ay)

\ target )
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TD vs. MC

* TD can learn before knowing the final outcome
® TD can learn online after every step

®  MC must wait until end of episode before return is known

* TD can learn without the final outcome
®  MC must wait until end of episode before return is known
MC can only learn from complete sequences
TD works in continuing (non-terminating) environments
MC only works for episodic (terminating) environments
* TDis independent of the temporal span of the prediction
® TD canlearn from single transitions
® MC must store all predictions (or states) to update at the end of an episode

* TD needs reasonable value estimates
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Temporal Difference Learning

Control
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SARSA Algorithm for On-Policy Control

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S, A) + Q(S,A) +a[R+1Q(S', A") — Q(S, 4)]
S+ S A« A

until S is terminal
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Off-Policy TD and Q-Learning




On and Off-Policy Learning

* On-policy learning

¢ "Learn on the job”
® Learn about policy it from experience sampled from nt

* Off-policy learning

® "Look over someone’s shoulder”
® Learn about policy mt from experience sampled from u
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Off-Policy Learning

* Evaluate target policy m(a|s) to compute v, (s) or g, (s, a)
* While using behavior policy u(a, s) to generate actions
* Why is this important?

® Learn from observing humans or other agents (e.g., from logged data)
® Re-use experience from old policies (e.g., from your own past experience)

® Learn about multiple policies while following one policy
® Learn about greedy policy while following exploratory policy
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Q-Learning

* (Q-learning estimates the value of the greedy policy

gr+1(s,a) = q1 (S, Ar) + a4 (Rt+1 Ty HLE}X q:(St+1,a") — q: (S, At))
* Acting greedy all the time would not explore sufficiently

Theorem
Q-learning control converges to the optimal action-value function, g — q~, as long as we take
each action in each state infinitely often.

* Note: no need for greedy behavior!
* Works for any policy that eventually selects all actions sufficiently often
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Q-Learning for Off-Policy Control

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, 4) + Q(S, A) + a[R + ymax, Q(',a) - Q(S, A)]
S+ 5

until S is terminal
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