

Reinforcement Learning Computer Engineering Department Sharif University of Technology

Mohammad Hossein Rohban, Ph.D.

Spring 2025

Courtesy: Some slides are adopted from CS 285 Berkeley, and CS 234 Stanford, and Pieter Abbeel's compact series on RL.

Disadvantages of Monte-Carlo Learning

- We have seen MC algorithms can be used to learn value predictions
- But when episodes are long, learning can be slow
 - we have to wait until an episode ends before we can learn...
 - return can have high variance
 - Which one is more? First-visit or every-visit
- Are there alternatives? (Spoiler: yes)

Monte Carlo Control

Monte-Carlo Control

Repeat:

- Sample episode 1, ..., k, ..., using $\pi: \{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- For each state S_t and action A_t in the episode:

$$q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha_t \left(G_t - q(S_t, A_t) \right)$$

• e.g.,

$$\alpha_t = \frac{1}{N(S_t, A_t)}$$
 of $\alpha_t = 1/k$

• Improve policy based on new action-value function

$$\pi^{new}(s) = \operatorname*{argmax}_{a \in A} q(s, a)$$

Any issue?

- Let's consider this example:
- Discount = 1, start in state H.

А	В	С	D	E	F	G	Н	I	J
r=10	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	1	\rightarrow	\rightarrow	r=1

Epsilon Greedy Policy

- Simple idea to balance exploration and achieving rewards
- Let |A| be the number of actions
- Then an ϵ -greedy policy w.r.t a state action value Q(s, a) is

$$\pi(a|s) =
\bullet \arg \max_a Q(s, a), \text{ w. prob } 1 - \epsilon + \frac{\epsilon}{|A|}
\bullet a' \neq \arg \max Q(s, a) \text{ w. prob } \frac{\epsilon}{|A|}$$

Does this hurt improvement?

Theorem

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} \ge V^{\pi_i}$

Monte-Carlo Control (done right)

Repeat:

- Sample episode 1, ..., k, ..., using $\pi: \{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- For each state S_t and action A_t in the episode:

$$q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha_t \left(G_t - q(S_t, A_t) \right)$$

• e.g.,

$$\alpha_t = \frac{1}{N(S_t, A_t)}$$
 of $\alpha_t = 1/k$

• Improve policy based on new action-value function

$$\begin{aligned} \pi(a|s) &= \\ \bullet \ \arg\max_a Q(s,a), \ \text{w. prob } 1 - \epsilon + \frac{\epsilon}{|A|} \\ \bullet \ a' \neq \arg\max Q(s,a) \ \text{w. prob } \frac{\epsilon}{|A|} \end{aligned}$$

Disadvantages of MC Learning

- We have seen MC algorithms can be used to learn value predictions
- But when episodes are long, learning can be slow
 - ...we have to **wait until an episode ends** before we can learn
 - ...return can have high variance
- Are there alternatives? (Yes)

Temporal Difference Learning

Prediction

TD Overview

TD methods learn directly from episodes of experience TD is *model-free*: no knowledge of MDP transitions / rewards TD learns from *incomplete* episodes, by *bootstrapping* TD updates a guess towards a guess

Temporal Difference Learning by Sampling Bellman Equations

• Bellman update equations:

$$v_{k+1}(s) = \mathbb{E} \left[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t \sim \pi(S_t) \right]$$

• We can sample this!

$$v_{t+1}(S_t) = R_{t+1} + \gamma v_t(S_{t+1})$$

• Samples could be averaged, in a similar way to MC:

$$v_{t+1}(S_t) = v_t(S_t) + \alpha_t \left(\underbrace{R_{t+1} + \gamma v_t(S_{t+1}) - v_t(S_t)}_{\text{target}}\right)$$
temporal difference error δ_t

Temporal Difference Learning

- Prediction setting: learn v_{π} online from experience under policy π
- Monte Carlo
 - Update value $v_n(S_t)$ towards sampled return G_t

$$v_{n+1}(S_t) = v_n(S_t) + \alpha \left(\mathbf{G}_t - v_n(S_t) \right)$$

- TD Learning
 - Update value $v_t(S_t)$ towards estimated return $R_{t+1} + \gamma v(S_{t+1})$

$$v_{t+1}(S_t) \leftarrow v_t(S_t) + \alpha \underbrace{\left(\underbrace{\frac{\mathsf{TD error}}{\mathbf{R}_{t+1} + \gamma v_t(S_{t+1})} - v_t(S_t)}_{\text{target}} \right)}_{\text{target}}$$

Backup (Dynamic Programming)

Backup (Monte Carlo)

Backup (Temporal Difference)

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

TD Learning for action values

- We can apply the same idea to action values
- Temporal-difference learning for action values:
 - Update value $q_t(S_t, A_t)$ towards estimated return $R_{t+1} + \gamma q(S_{t+1}, A_{t+1})$

$$q_{t+1}(S_t, A_t) \leftarrow q_t(S_t, A_t) + \alpha \left(\underbrace{\frac{\mathsf{TD error}}{\underset{t \neq 1}{\mathsf{R}_{t+1} + \gamma q_t(S_{t+1}, A_{t+1})}}_{\mathsf{target}} - q_t(S_t, A_t) \right)$$

TD vs. MC

• TD can learn before knowing the final outcome

- TD can learn online after every step
- MC must wait until end of episode before return is known

• TD can learn without the final outcome

- MC must wait until end of episode before return is known
- MC can only learn from complete sequences
- TD works in continuing (non-terminating) environments
- MC only works for episodic (terminating) environments
- TD is independent of the temporal span of the prediction
 - TD can learn from single transitions
 - MC must store all predictions (or states) to update at the end of an episode
- TD needs reasonable value estimates

Temporal Difference Learning

Control

SARSA Algorithm for On-Policy Control

Initialize $Q(s, a), \forall s \in S, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode): Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Repeat (for each step of episode): Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$ $S \leftarrow S'; A \leftarrow A';$ until S is terminal

Off-Policy TD and Q-Learning

On and Off-Policy Learning

- On-policy learning
 - "Learn on the job"
 - Learn about policy π from experience sampled from π
- Off-policy learning
 - "Look over someone's shoulder"
 - Learn about policy π from experience sampled from μ

Off-Policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $v_{\pi}(s)$ or $q_{\pi}(s, a)$
- While using behavior policy $\mu(a, s)$ to generate actions
- Why is this important?
 - Learn from observing humans or other agents (e.g., from logged data)
 - **Re-use experience** from old policies (e.g., from your own past experience)
 - Learn about multiple policies while following one policy
 - Learn about greedy policy while following exploratory policy

Q-Learning

• Q-learning estimates the value of the greedy policy

$$q_{t+1}(s,a) = q_t(S_t, A_t) + \alpha_t \left(R_{t+1} + \gamma \max_{a'} q_t(S_{t+1}, a') - q_t(S_t, A_t) \right)$$

• Acting greedy all the time would not explore sufficiently

Theorem

Q-learning control converges to the optimal action-value function, $q \rightarrow q^*$, as long as we take each action in each state infinitely often.

- Note: no need for greedy behavior!
- Works for **any** policy that eventually selects all actions sufficiently often

Q-Learning for Off-Policy Control

Initialize $Q(s, a), \forall s \in S, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode): Initialize SRepeat (for each step of episode): Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$ $S \leftarrow S';$ until S is terminal