Reinforcement Learning

Computer Engineering Department
Sharif University of Technology

Mohammad Hossein Rohban, Ph.D.

Spring 2025
Courtesy: Some slides are adopted from CS 285 Berkeley, and CS234

Stanford, and Pieter Abbeel’s compact series on RL. ™
N’

N/

N’ N’

e @)) Lecture 5 - 1

Function Approximation

Lecture 5 -2

Function approximation and deep RL

 The policy, value function, model, and agent state update are all functions

 We want to learn these from experience (data).

* |f there are too many states, we need to approximate.

 This is often called deep reinforcement learning, when using neural networks
to represent these functions.

Lecture 5-3

Large-Scale Reinforcement Learning

 Reinforcement learning can be used to solve large problems, e.g.

020

* Backgammon: 1 states

* Go: 10179 states
* Helicopter: continuous state space

* Robots: real world

« How can we apply our methods for prediction and control?

Lecture5-4

Value Function Approximation

Lecture5-5

Value Function Approximation

* So far we mostly considered lookup tables

* Every state s has an entry v(s)
* Orevery state-action pair s,a has an entry q(s, a)

 Problem with large MDPs:

* There are too many states and/or actions to store in memory
* |tistoo slow to learn the value of each state individually
* |Individual environment states are often not fully observable

Lecture5-6

Value Function Approximation

e Solution for large MDPs:
* Estimate value function with function approximation

vw(s) = vz(s) (or v.(s))
gw(s, a) = q(s,a) (or (s, a))

* Update parameter w (e.g., using MC or TD learning)
* Generalize to unseen states

Lecture5-7

Key Requirements

Lecture 5-8

Learning in new setup

* In principle, any function approximator can be used, but RL has specific
properties:

* Experience is not iid — successive time-steps are correlated
* Agent’s policy affects the data it receives
* Regression targets can be non-stationary

¢ ...because of changing policies (which can change the target and the data!)
¢ ..because of bootstrapping

¢ ..because of non-stationary dynamics (e.g., other learning agents)

¢ ..because the world is large (never quite in the same state)

Lecture 5-9

Gradient-based Algorithms

Approximate Values By Stochastic Gradient Descent

e Goal: find w that minimize the difference between v,,(s) and v, (s)

J(W) = Es-a[(vx(S) = vw(S))?*]
e Gradient descent:

1
Aw = —'EQ'VWJ(W) = aEq(vz(S) — vw(S))Vwvw(S)
e Stochastic gradient descent (SGD), sample the gradient:
Aw = a(G; — Vw(St))VwVw(St)

Note: Monte Carlo return G is a sample for v (s;)

Lecture 5-11

Training Loss

* We can’t update towards the true value function v, (s)

* We substitute a target for v, (s)
* For MC, the target is the return G;

Aw; = a(G¢ — v (s))Vwrw(s)
* ForTD, the target is the TD target Ry, + yv,,(S¢+1)

Awr = a(Re4+1 + yvw(St+1) — vw(Sr)) Viwvw(St)

Lecture5-12

Monte-Carlo with Value Function Approximation

* Thereturn G; is an unbiased sample of v (s)
* Can therefore apply “supervised learning” to (online) “training data":

1(80:G0)i (561

Lecture 5-13

Control with value-function
approximation

Lecture 5 - 14

Control with Value Function Approximation

Starting 0

Policy evaluation Approximate policy evaluation, gy = ¢,

Policy improvement E.g., e-greedy policy improvement

Lecture 5-15

Action-Value Function Approximation

* Approximate the action-value function q,,(s,a) = q.(s,a)

Auls, a) Quls, a1) - AwlS, ay)

Lecture 5 - 16

Action-Value Function Approximation

 Should we use action-in, or action-out?
e Actionin: q,,(s,a) = wlx(s,a)
* Action out: q,,(s) = Wx(s) such that q,,(s,a) = q,,(s)[a]

* Oneincorporates a in feature learning, the other uses the same features for
all a’s

 Unclear which is better in general
 |f we want to use continuous actions, action-in is easier
* For (small) discrete action spaces, action-out is common (e.g., DQN)

Lecture 5 -17

Deep reinforcement learning

Lecture 5 - 18

Recall: Model free control

* Similar to policy evaluation, true state-action value function for a state is
unknown and so substitute a target value

* In Monte Carlo methods, use a return G; as a substitute target
Aw = oG — @(st, at; w))Vw@(st, at; W)
 For SARSA instead use a TD target
Aw = ofr + yQ(set1, arr1; w) — Q(s¢, ar; w)) Vi Q(st, ag; w)
 For Q-learning

A

Aw = a(r +ymax Q(se+1, 3 w) — Q(st, ar; W) Vw Q(st, ar; w)

Lecture 5 -19

Doing deep RL in Atari

Lecture 5 - 20

DQNSs in Atari

 End-to-end learning of values Q(s, a) from pixels s

* Input state s is stack of raw pixels from last 4 frames

 Qutputis Q(s, a) for 18 joystick/button positions

 Reward is change in score for that step

 Network architecture and hyperparameters fixed across all games

32 4xA4 filters 256 hidden units Fully-connected linear
output layer

16 8x8 filters
4xB4xB4

Stack of 4 previous , Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Lecture 5 - 21

DQNSs in Atari

 Q-learning converges to the optimal Q*(s, a) using table lookup
representation.

 But Q-learning with Value Function Approximation can diverge

 Two of the issues causing problems:

°* Correlations between samples (non-iid training)
* Non-stationary targets

 Deep Q-learning (DQN) addresses these challenges by
* Experience replay
* Fixed Q-targets

Lecture 5 - 22

DQNs: Experience Replay

* To help remove correlations, store dataset (called a replay buffer) D from

prior experience s1, a1, M, S
52,4d2,13,53 — S,a, resl
53,43, 14, 54

Sty dty Nt+15 St+1

 To perform experience replay, repeat the following:
* (s,a,r,s") ~ D:sample an experience tuple from the dataset
* Compute the target value for the sampled s: 7 + y max Q(s',a’; w)
a

* Use stochastic gradient descent to update the network weights

A

Aw = a(r + ymax Q(s’,a;w) — Q(s,a; w))V,, Qs, a; w)

Lecture 5 - 23

Problem

Can treat the target as a constant scalar, but the weights
will get updated on the next round, changing the target
value

Lecture 5 -24

DQNs: Fixed Q-Targets

* To help improve stability, fix the target weights used in the target calculation
for multiple updates

* Target network uses a different set of weights than the weights being
updated

 Let parameters w™ be the set of weights used in the target, and w be the
weights that are being updated

e Slight change to computation of target value:
* (s,a,1,s') ~ D:sample an experience tuple from the dataset
* Compute the target value for the sampled s: ¥ + ymaxQ(s’,a’;w™)
al

* Use stochastic gradient descent to update the network weights
Aw = or + ymax Q(s’,a; w™) — Q(s, a; w))V,, Q(s, a; w)
a/

DQN Algorithm

1: Input C, &, D = {}, Initialize w, w™ = w, t =0

2: Get initial state S0

5 loop

4. Sample action a; given e-greedy policy for current Q(s;, a; w)
by Observe reward ry and next state s;41

6: Store transition (st, at, re, sg+1) in replay buffer D

F i Sample random minibatch of tuples (s;, a;, r;, s;11) from D
8: for j in minibatch do

0O: if episode terminated at step / + 1 then

].O: Yi = 1r;

11: else

122 Yi = rj + 7y maxy @(s,-+1, a'; w_)

13: end if

14: Do gradient descent step on (y; — Q(s;, a;; w))? for parameters w: Aw = a(y; — Q(s;, a;; w))Vw Q(s;, a;; w)
1h: end for

16: t=t+1

Y if mod(t,C) == 0 then

18: W —w

19: endif

20: end loop

Lecture 5 - 26

DQN Summary

« DQN uses experience replay and fixed Q-targets

e Store transition (S¢, A, 7¢4+1, S¢+1) in replay memory D

* Sample random mini-batch of transitions (s, a,r,s") from D
« Compute Q-learning targets w.r.t. old, fixed parameters w™
 Optimizes MSE between Q-network and Q-learning targets
e Uses stochastic gradient descent

Lecture 5 - 27

0
(o]
1
LN
(V]
|
=
e
(8)
()
-

o 2 L3 LY Rl Ed B4 R L4
&»

o

=

5 I A I I I I R I B R R T R RN

w

®

m L B I I I I R I B N D I I I I I I
m.

5 E_ B B B =
2

3 17/ 11/

1 network, outputs Q value for each action

Convolution
-

Results

: Dee DQN w/ | DQN w/ | DQN w/repla
Sanme RIDEal Netw:))rk fixed Q/ replay : and fixe{j (g .
Breakout 9 3 10 241 317
Enduro 62 29 141 831 1006
River Raid | 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
AP 301 | 302 373 | 826 1089
Invaders

Lecture 5 - 29

Policy Gradient

The Goal of Reinforcement Learning

J(0) =E ZT(St,at)

s1~ p(s1)
ag~ (. |S¢)
St+1~ P(. |Se, ar)

Lecture 5 - 31

Trajectory Probability

stochastic policy

Lecture 5 - 32

Trajectory Probability

Lecture 5 - 33

Evaluating the Objective

0* = arg max | - [Zt: r(s¢, at)] %
T k!

Monte Carlo estimation for objective function:

J(O) = Brepir) [Zr St At] ZZ r(8i,t; i)

L sum over samples from 7y

Lecture 5 - 34

Direct Policy Differentiation

0* = arg max B csmalie) {Z r(s¢, at)] a convenient identity

Vopo(T)

e = Vpo(T)

J () po(7) Vg log pe(T) = po(T)

Lecture 5 - 35

Direct Policy Differentiation

0* = arg max J(0)

3 ; 7Te(ﬁlt |St)p(St+1 |St, at)
J(0) = ETNPQ(T) [7“(7‘)] log of bothées '

log pe(7) = logp(s1) + Y _logmo(asls;) + log p(set1st, ay)
VQJ(Q) — ETNpe(T) [V@ logpg (7’)7“(7‘)] t=1

A
[|

14
Vo [1052({1) + > logmg(asls:) + lwat)]

t=1

VoJ(0) = Errpy(r) [(Z Vg log 7T9(at|St)> (Z "“(St,at))]

=1

Lecture 5 - 36

Evaluating the Policy Gradient

recall: J(0) = Ep,(+)

Z r St, ay]]i’ EZ: zt: T(Si,ta a'i,,t) s /

T e
V@J(H) - E”'NPO(T) [(Z Vg log 7T9(at|St)) <Z T(St, at)>] e ,‘

t=1

1 N T fit.a model to
VOJ(H) R VQ log 7T9(a7;,t|si’t) T(Sz’,t, ai,t) estimate return
N

i=1 \i=1

generate

0« 0+ aVyJ(6) i the poio)

; R
policy

Lecture 5 - 37

REINFORCE Algorithm

REINFORCE algorithm:

)

&= 1. sample {7'} from my(a;|s;) (run the policy)

‘ 2. V@J(@) ~ zz (Zt Vg log 779(32|S%)) (Zt T(Sivai))
- 3 0+ 0+ aVed (9)

fit a model to
estimate return

generate
samples (i.e.
run the policy)

t — improve the
policy

Lecture 5 - 38

Imitation Learning: Behavioral Cloning

Directly learns a policy by using supervised learning on observation-action

pairs from expert demonstrations.

training super\{lsed mo(ag|st)
e learning
| T
maximum likelihood: VgJmr (0 N y: (;: Vo log We(ai,t\si,t)>
=1 =1

Lecture 5 - 39

Policy Gradient Vs Maximum Likelihood
1 N T T
policy gradient: VyJ(0) ~ N Z <Z Vg log mg(aj ¢|si¢)) (ZT Si,ts it)

i=1 \t=1

N /T
1
maximum likelihood: VgJuL(0) ~ N Z (Z Vg log 7T9(ai,t|si,t)>

i=1 \t=1

Uy’ (&t |St)
training superv.ised mo(ag|st)
S learning

Lecture 5 - 40

