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Function Approximation
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• The policy, value function, model, and agent state update are all functions

• We want to learn these from experience (data).

• If there are too many states, we need to approximate.

• This is often called deep reinforcement learning, when using neural networks 
to represent these functions.

Function approximation and deep RL
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• Reinforcement learning can be used to solve large problems, e.g.

• Backgammon: 10!" states
• Go: 10#$" states
• Helicopter: continuous state space
• Robots: real world

• How can we apply our methods for prediction and control?

Large-Scale Reinforcement Learning
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Value Function Approximation
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• So far we mostly considered lookup tables

• Every state s has an entry 𝑣(𝑠)
• Or every state-action pair 𝑠, 𝑎 has an entry 𝑞(𝑠, 𝑎)

• Problem with large MDPs:

• There are too many states and/or actions to store in memory
• It is too slow to learn the value of each state individually
• Individual environment states are often not fully observable

Value Function Approximation
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• Solution for large MDPs:
• Estimate value function with function approximation

• Update parameter w (e.g., using MC or TD learning)
• Generalize to unseen states

Value Function Approximation
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Key Requirements
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• In principle, any function approximator can be used, but RL has specific 
properties:

• Experience is not iid — successive time-steps are correlated
• Agent’s policy affects the data it receives
• Regression targets can be non-stationary
• ...because of changing policies (which can change the target and the data!)
• ...because of bootstrapping
• ...because of non-stationary dynamics (e.g., other learning agents)
• ...because the world is large (never quite in the same state)

Learning in new setup
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Gradient-based Algorithms
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• Goal: find 𝑤 that minimize the difference between 𝑣!(𝑠) and 𝑣" 𝑠

• Gradient descent:

• Stochastic gradient descent (SGD), sample the gradient:

Note: Monte Carlo return 𝐺# is a sample for 𝑣"(𝑠#)

Approximate Values By Stochastic Gradient Descent
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• We can’t update towards the true value function 𝑣" 𝑠
• We substitute a target for 𝑣"(𝑠)
• For MC, the target is the return 𝐺%

• For TD, the target is the TD target 𝑅%&# + 𝛾𝑣' 𝑆%&#

Training Loss
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• The return 𝐺# is an unbiased sample of 𝑣"(𝑠)
• Can therefore apply “supervised learning” to (online) “training data":

Monte-Carlo with Value Function Approximation
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Control with value-function
approximation
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Control with Value Function Approximation
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• Approximate the action-value function 𝑞!(𝑠, 𝑎) ≈ 𝑞"(𝑠, 𝑎)

Action-Value Function Approximation
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• Should we use action-in, or action-out?
• Action in: 𝑞' 𝑠, 𝑎 = 𝑤(𝑥(𝑠, 𝑎)
• Action out: 𝑞' 𝑠 = 𝑊𝑥(𝑠) such that 𝑞' 𝑠, 𝑎 = 𝑞' 𝑠 [𝑎]

• One incorporates a in feature learning, the other uses the same features for 
all a’s

• Unclear which is better in general
• If we want to use continuous actions, action-in is easier
• For (small) discrete action spaces, action-out is common (e.g., DQN)

Action-Value Function Approximation
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Deep reinforcement learning
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Recall: Model free control

• Similar to policy evaluation, true state-action value function for a state is 
unknown and so substitute a target value

• In Monte Carlo methods, use a return 𝐺# as a substitute target

• For SARSA instead use a TD target

• For Q-learning
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Doing deep RL in Atari
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DQNs in Atari
• End-to-end learning of values Q(s, a) from pixels s
• Input state s is stack of raw pixels from last 4 frames
• Output is Q(s, a) for 18 joystick/button positions
• Reward is change in score for that step
• Network architecture and hyperparameters fixed across all games



Lecture 5 - 22

DQNs in Atari
• Q-learning converges to the optimal Q∗(s, a) using table lookup 

representation.
• But Q-learning with Value Function Approximation can diverge
• Two of the issues causing problems:
• Correlations between samples (non-iid training)
• Non-stationary targets 

• Deep Q-learning (DQN) addresses these challenges by
• Experience replay
• Fixed Q-targets
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DQNs: Experience Replay 
• To help remove correlations, store dataset (called a replay buffer) D from 

prior experience

• To perform experience replay, repeat the following:
• (𝑠, 𝑎, 𝑟, 𝑠′) ∼ 𝐷: sample an experience tuple from the dataset
• Compute the target value for the sampled s: 𝑟 + 𝛾max

)!
<𝑄(𝑠*, 𝑎*; 𝑤)

• Use stochastic gradient descent to update the network weights
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Problem

Can treat the target as a constant scalar, but the weights 
will get updated on the next round, changing the target 

value
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DQNs: Fixed Q-Targets
• To help improve stability, fix the target weights used in the target calculation 

for multiple updates
• Target network uses a different set of weights than the weights being 

updated
• Let parameters 𝑤$ be the set of weights used in the target, and 𝑤 be the 

weights that are being updated
• Slight change to computation of target value:
• (𝑠, 𝑎, 𝑟, 𝑠′) ∼ 𝐷: sample an experience tuple from the dataset
• Compute the target value for the sampled s: 𝑟 + 𝛾max

)*
<𝑄(𝑠*, 𝑎*; 𝑤+)

• Use stochastic gradient descent to update the network weights
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DQN Algorithm
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DQN Summary

• DQN uses experience replay and fixed Q-targets
• Store transition (𝑠# , 𝑎# , 𝑟#%&, 𝑠#%&) in replay memory D
• Sample random mini-batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′) from D
• Compute Q-learning targets w.r.t. old, fixed parameters 𝑤$

• Optimizes MSE between Q-network and Q-learning targets
• Uses stochastic gradient descent
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DQN
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Results
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Policy Gradient
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The Goal of Reinforcement Learning

𝑠#~ 𝑝 𝑠#
𝑎%~ 𝜋 . |𝑠%
𝑠%&#~ 𝑝 . |𝑠%, 𝑎%
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Trajectory Probability

stochastic policy
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Trajectory Probability
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Evaluating the Objective

Monte Carlo estimation for objective function:  
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Direct Policy Differentiation
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Direct Policy Differentiation
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Evaluating the Policy Gradient
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REINFORCE Algorithm
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Imitation Learning: Behavioral Cloning

Directly learns a policy by using supervised learning on observation-action 

pairs from expert demonstrations. 
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Policy Gradient Vs Maximum Likelihood


