

Computer Engineering Department

Reinforcement Learning: Advanced Policy Gradients

Mohammad Hossein Rohban, Ph.D.

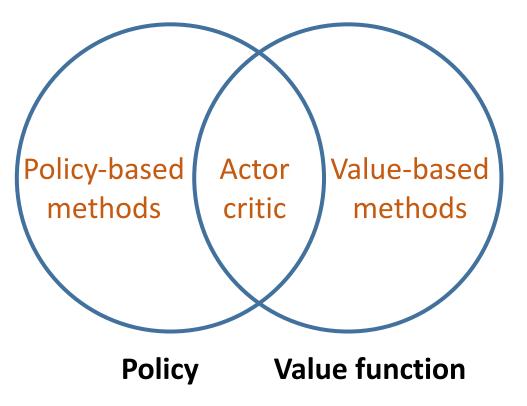
Spring 2025

Courtesy: Most of slides are adopted from CS 285 Berkeley.

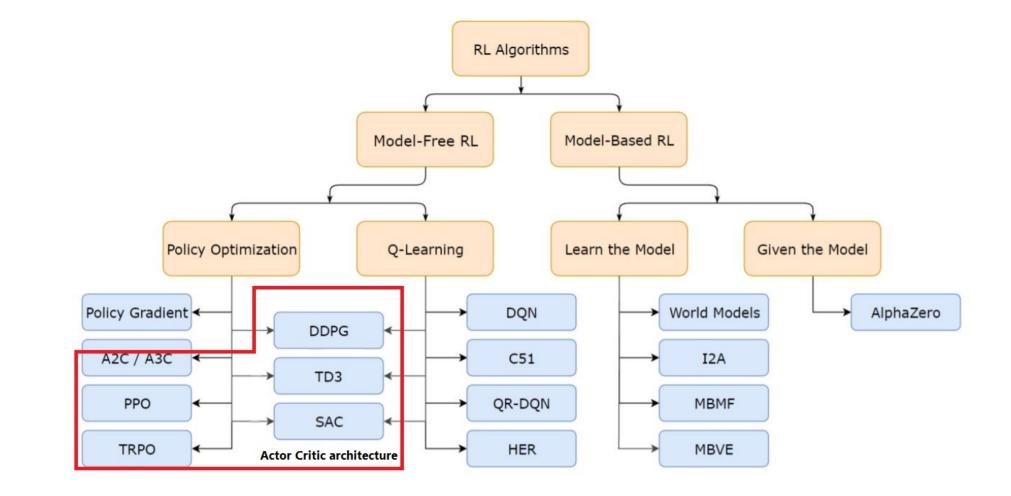
Lecture 10 - 1

Model-Free RL

- Value-based methods
 - Learnt value function
 - Implicit policy
- Policy-based methods
 - No value function
 - Learnt policy
- Actor-critic methods
 - Learnt value function
 - Learnt policy



Overview of Modern RL Methods



Policy Gradient Intuition

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \underbrace{\nabla_{\theta} \log \pi_{\theta}(\tau_{i}) r(\tau_{i})}_{\sum_{t=1}^{T} \nabla_{\theta} \log_{\theta} \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t})}$$

maximum likelihood:

$$\nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_i)$$

- Good stuff is made more likely
- Bad stuff is made less likely
- Simply formalizes the notion of "trial and error"!

Bias and Variance of Policy Gradient

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_i) r(\tau_i)$$
The main source of high variance

• Unbiased estimation:

$$E\left[\frac{1}{N}\sum_{i=1}^{N}\nabla_{\theta}\log\pi_{\theta}(\tau_{i})r(\tau_{i})\right] = \nabla_{\theta}J(\theta)$$

But suffers from high variance!

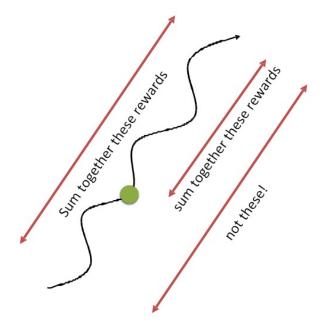
Reducing Variance

- Everything in the gradient whose expected is zero could be removed, without affecting the optimization, but could lead to lower gradient variance!
- Causality trick
- Discount factor
- Baseline
- Actor-critic
- Optimization techniques:
 - Natural gradient
 - Trust region

Reducing Variance: Causality

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

Causality: policy at time t' cannot affect reward at time t when t < t'



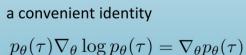
Reducing Variance: Discount Factor

option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
 Not the same option 2: $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} \gamma^{t-1} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t=1}^{T} \gamma^{t-1} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

Reducing Variance: Baselines

 $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p_{\theta}(\tau) [r(\tau) - b]$ $b = \frac{1}{N} \sum_{i=1}^{N} r(\tau)$



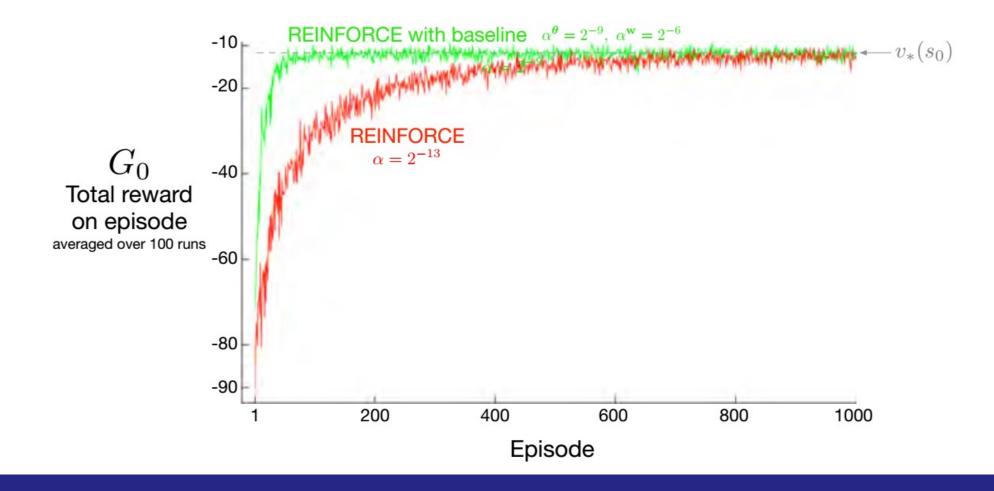
$$E[\nabla_{\theta} \log p_{\theta}(\tau)b] = \int p_{\theta}(\tau)\nabla_{\theta} \log p_{\theta}(\tau)b \, d\tau = \int \nabla_{\theta} p_{\theta}(\tau)b \, d\tau = b\nabla_{\theta} \int p_{\theta}(\tau)d\tau = b\nabla_{\theta} 1 = 0$$

subtracting a baseline is *unbiased* in expectation!

average reward is *not* the best baseline, but it's pretty good!

Reducing Variance: Baselines

Faster convergence:



Lecture 10 - 10

Reducing Variance: Review

- Exploiting causality
 - Future doesn't affect the past
- Discount factor
 - Two different version
- Baselines
 - Analyzing variance for deriving optimal baselines
- Now: Introducing actor-critic methods!

Policy Gradients so Far

$\hat{Q}^{\pi}(\mathbf{x}_t, \mathbf{u}_t) = \sum r(\mathbf{x}_{t'}, \mathbf{u}_{t'})$ **REINFORCE** algorithm: 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ (run the policy) 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}^{i}, \mathbf{a}_{t'}^{i}) \right) \right)$ 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ generate samples (i.e. run the policy $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}^{\pi}$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ "reward to go"

t' = t

fit a model to

estimate return

improve the policy

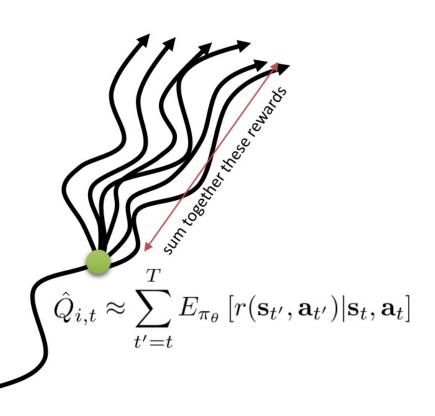
Improving Estimation of Reward to Go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$

How to make a better estimate?

$$Q(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]: \text{ true } expected \text{ reward-to-go}$$
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

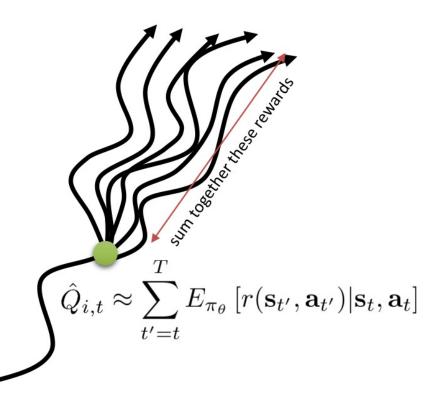


Improving Estimation of Reward to Go

Further improvement: Adding a baseline!

$$Q(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]: \text{ true } expected \text{ reward-to-go}$$
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) - b_{t} \right)$$

$$b_t = \frac{1}{N} \sum_i Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$



Improving Estimation of Reward to Go

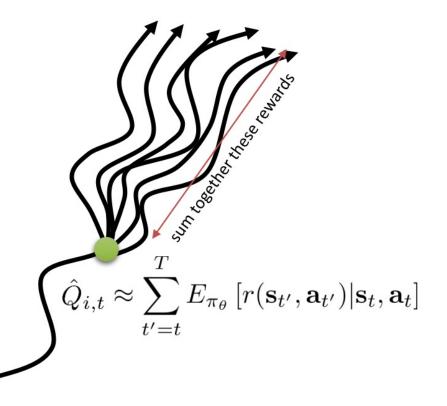
Further improvement: Adding a baseline!

$$Q(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]: \text{ true } expected \text{ reward-to-go}$$
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) - V(\mathbf{s}_{i,t}) \right)$$

$$b_t = \frac{1}{N} \sum_{i} Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

$$\downarrow$$

$$V(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)} [Q(\mathbf{s}_t, \mathbf{a}_t)]$$



Advantage Value

 $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$: total reward from taking \mathbf{a}_t in \mathbf{s}_t

 $V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$: total reward from \mathbf{s}_t

 $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$: how much better \mathbf{a}_t is

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

the better this estimate, the lower the variance

Advantage Value Approximation

$$Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]$$
$$V^{\pi}(\mathbf{s}_{t}) = E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t})} \left[Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
$$A^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) - V^{\pi}(\mathbf{s}_{t})$$
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

fit
$$Q^{\pi}$$
, V^{π} , or A^{π}
fit a model to
estimate return
generate
samples (i.e.
run the policy)
 $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

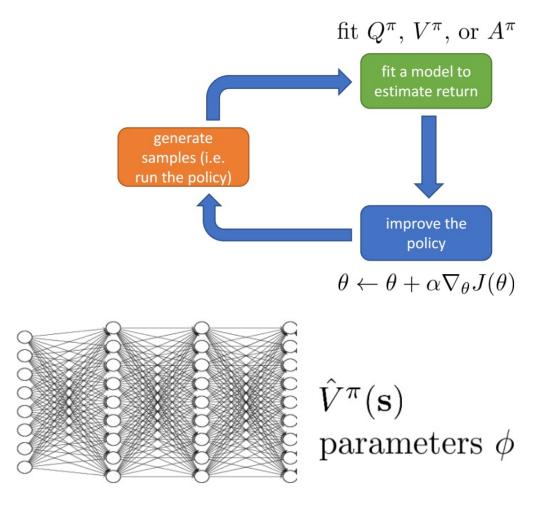
$$Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]$$
$$= r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \sum_{t'=t+1}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]$$

 $\approx V^{\pi}(\mathbf{s}_{t+1})$

Advantage Value Approximation

 $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \approx r(\mathbf{s}_t, \mathbf{a}_t) + V^{\pi}(\mathbf{s}_{t+1})$

 $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \approx r(\mathbf{s}_t, \mathbf{a}_t) + V^{\pi}(\mathbf{s}_{t+1}) - V^{\pi}(\mathbf{s}_t)$



 \mathbf{S}

let's just fit $V^{\pi}(\mathbf{s})!$

Lecture 10 - 18

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$
$$J(\theta) = E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)} \left[V^{\pi}(\mathbf{s}_1) \right]$$

how can we perform policy evaluation?

Monte Carlo policy evaluation (this is what policy gradient does)

$$V^{\pi}(\mathbf{s}_t) \approx \sum_{t'=t}^T r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$
$$V^{\pi}(\mathbf{s}_t) \approx \frac{1}{N} \sum_{i=1}^N \sum_{t'=t}^T r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

(requires us to reset the simulator)



Monte Carlo estimation with function approximator:

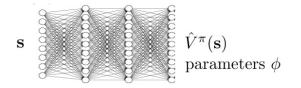
 $V^{\pi}(\mathbf{s}_t) \approx \sum_{t'=t}^T r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$

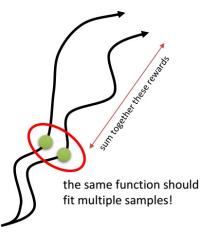
not as good as this: $V^{\pi}(\mathbf{s}_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$

but still pretty good!

training data: $\left\{ \left(\mathbf{s}_{i,t}, \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) \right\}$

supervised regression:
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$





How to make a better estimate?

ideal target:
$$y_{i,t} = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{i,t} \right] \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + V^{\pi}(\mathbf{s}_{i,t+1}) \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}^{\pi}_{\phi}(\mathbf{s}_{i,t+1})$$

Monte Carlo target: $y_{i,t} = \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})$

directly use previous fitted value function!

Bootstrap Estimation with Function Approximator

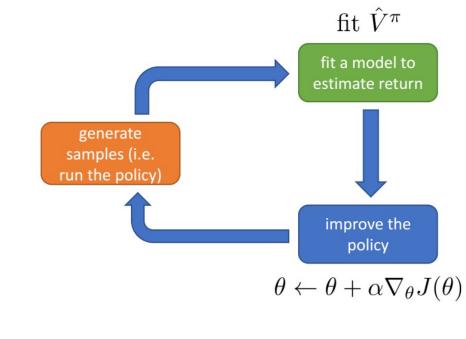
ideal target:
$$y_{i,t} = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{i,t}] \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

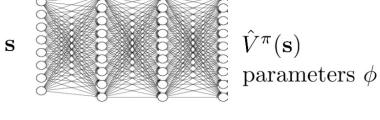
training data:
$$\left\{ \left(\mathbf{s}_{i,t}, r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}^{\pi}_{\phi}(\mathbf{s}_{i,t+1}) \right) \right\}$$

supervised regression:
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

Batch Actor-Critic Algorithm

batch actor-critic algorithm:

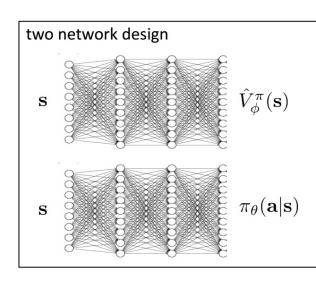




 $V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$

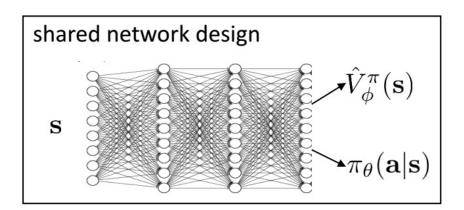
Actor-Critic Algorithm: Architecture Design

batch actor-critic algorithm:



+ simple & stable

- no shared features between actor & critic



Actor-Critic Algorithm: Batch vs. Online

batch actor-critic algorithm:

1. sample
$$\{\mathbf{s}_i, \mathbf{a}_i\}$$
 from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot)
2. fit $\hat{V}^{\pi}_{\phi}(\mathbf{s})$ to sampled reward sums
3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}^{\pi}_{\phi}(\mathbf{s}'_i) - \hat{V}^{\pi}_{\phi}(\mathbf{s}_i)$
4. $\nabla_{\theta} J(\theta) \approx \sum_i \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_i|\mathbf{s}_i) \hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i)$
5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

online actor-critic algorithm:

1. take action
$$\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$$
, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
2. update \hat{V}^{π}_{ϕ} using target $r + \gamma \hat{V}^{\pi}_{\phi}(\mathbf{s}')$
3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}^{\pi}_{\phi}(\mathbf{s}') - \hat{V}^{\pi}_{\phi}(\mathbf{s})$
4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$
5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Proximal Policy Optimization

 We don't want the new policy to change a lot in an iteration. Why?

$D_{KL}(\pi_{\theta'}(.|s) || \pi_{\theta}(.|s)) \le \epsilon$

- What is the effect of the constraint?
- Recall KL-Divergence:

$$D_{KL}(\pi_{\theta'}(.|s) | | \pi_{\theta}(.|s)) = \Sigma_a \pi_{\theta'}(a|s) \log \frac{\pi_{\theta'}(a|s)}{\pi_{\theta}(a|s)}$$

We are effectively constraining the ratio $\frac{\pi_{\theta'}(a|s)}{\pi_{\theta}(a|s)}$

Proximal Policy Optimization

• Let's design a simpler objective that directly constrains $\frac{\pi_{\theta'}(a|s)}{\pi_{\theta}(a|s)}$

$$\operatorname{argmax}_{\theta'} E_{\{s \sim \mu_{\theta}, a \sim \pi_{\theta}\}} \min \begin{cases} \frac{\pi_{\theta'}(a|s)}{\pi_{\theta}(a|s)} A^{\pi_{\theta}}(s, a), \\ clip(\frac{\pi_{\theta'}(a|s)}{\pi_{\theta}(a|s)}, 1 - \epsilon, 1 + \epsilon) A^{\pi_{\theta}}(s, a) \end{cases}$$

could be easily implemented with auto-diff packages

A < 0

where
$$clip(x, 1 - \epsilon, 1 + \epsilon) = \begin{cases} 1 - \epsilon & if \ x < 1 - \epsilon \\ x & if \ 1 - \epsilon \le x \le 1 + \epsilon \\ 1 + \epsilon & if \ x > 1 + \epsilon \end{cases}$$

Proximal Policy Optimization (cont.)

Algorithm 1 PPO-Clip

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: for k = 0, 1, 2, ... do
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 4: Compute rewards-to-go \hat{R}_t .
- 5: Compute advantage estimates, A_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 6: Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right),$$

typically via stochastic gradient ascent with Adam.

7: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm. 8: end for

Soft Policies

$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right].$$

How does the Bellman equation change?

$$\mathcal{T}^{\pi}Q(\mathbf{s}_t, \mathbf{a}_t) \triangleq r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V(\mathbf{s}_{t+1}) \right], \quad (2)$$

where

$$V(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim \pi} \left[Q(\mathbf{s}_t, \mathbf{a}_t) - \log \pi(\mathbf{a}_t | \mathbf{s}_t) \right]$$
(3)

Soft Policies

Lemma 1 (Soft Policy Evaluation). Consider the soft Bellman backup operator \mathcal{T}^{π} in Equation 2 and a mapping $Q^0: S \times \mathcal{A} \to \mathbb{R}$ with $|\mathcal{A}| < \infty$, and define $Q^{k+1} = \mathcal{T}^{\pi}Q^k$. Then the sequence Q^k will converge to the soft Q-value of π as $k \to \infty$.

Optimal Soft Policy

• The optimal soft policy (optimizing entropy augment objective) is:

$$\pi^*(a|s) = \frac{\exp Q(s,a)}{\sum_{a'} \exp Q(s,a')}$$

Soft actor-critic

1.Q-function update

Update Q-function to evaluate current policy:

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \mathbb{E}_{\mathbf{s}' \sim p_{\mathbf{s}}, \mathbf{a}' \sim \pi} \left[Q(\mathbf{s}', \mathbf{a}') - \log \pi(\mathbf{a}' | \mathbf{s}') \right]$$

This converges to Q^{π} .

2. Update policy

Update the policy with gradient of information projection:

$$\pi_{\mathrm{new}} = rg\min_{\pi'} \mathrm{D}_{\mathrm{KL}} \left(\pi'(\,\cdot\,|\mathbf{s}) \, \left\| \, rac{1}{Z} \exp Q^{\pi_{\mathrm{old}}}(\mathbf{s},\,\cdot\,)
ight)$$

In practice, only take one gradient step on this objective

3. Interact with the world, collect more data

Haarnoja, et al. **Soft Actor-Critic Algorithms** and Applications. '18

Soft actor-critic

Algorithm 1 Soft Actor-Critic

Inputs: The learning rates, λ_{π} , λ_Q , and λ_V for functions π_{θ} , Q_w , and V_{ψ} respectively; the weighting factor τ for exponential moving average.

- 1: Initialize parameters θ , w, ψ , and $\overline{\psi}$.
- 2: for each iteration do
- 3: (In practice, a combination of a single environment step and multiple gradient steps is found to work best.)
- 4: **for** each environment setup **do**
- 5: $a_t \sim \pi_{\theta}(a_t|s_t)$

6:
$$s_{t+1} \sim \rho_{\pi}(s_{t+1}|s_t, a_t)$$

7:
$$\mathcal{D} \leftarrow \mathcal{D} \cup \{(s_t, a_t, r(s_t, a_t), s_{t+1}\}$$

8: **for** each gradient update step **do**

9:
$$\psi \leftarrow \psi - \lambda_V \nabla_{\psi} J_V(\psi).$$

10:
$$w \leftarrow w - \lambda_Q \nabla_w J_Q(w).$$

- 11: $\theta \leftarrow \theta \lambda_{\pi} \nabla_{\theta} J_{\pi}(\theta).$
- 12: $\bar{\psi} \leftarrow \tau \psi + (1 \tau) \dot{\bar{\psi}}$.

Loss functions

$$J_{V}(\psi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[\frac{1}{2} \left(V_{\psi}(\mathbf{s}_{t}) - \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\phi}} \left[Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \log \pi_{\phi}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right] \right)^{2} \right]$$
(5)

$$J_Q(\theta) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_\theta(\mathbf{s}_t, \mathbf{a}_t) - \hat{Q}(\mathbf{s}_t, \mathbf{a}_t) \right)^2 \right],$$
(7)

with

$$\hat{Q}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V_{\bar{\psi}}(\mathbf{s}_{t+1}) \right], \quad (8)$$
$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[D_{\mathrm{KL}} \left(\pi_{\phi}(\cdot | \mathbf{s}_{t}) \| \frac{\exp\left(Q_{\theta}(\mathbf{s}_{t}, \cdot)\right)}{Z_{\theta}(\mathbf{s}_{t})} \right) \right]. \quad (10)$$

Related Papers

- Williams (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning: introduces REINFORCE algorithm
- Sutton, McAllester, Singh, Mansour (1999). Policy gradient methods for reinforcement learning with function approximation: actor-critic algorithms with value function approximation
- Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu (2016). Asynchronous methods for deep reinforcement learning: A3C, parallel online actor-critic
- Schulman, Moritz, L., Jordan, Abbeel (2016). High-dimensional continuous control using generalized advantage estimation: $TD(\lambda)$ actor-critic

Related Papers

- Degris, White, Sutton. (2012). Off-policy actor-critic: off-policy actor-critic with importance sampling
- Silver et al. (2014). Deterministic policy gradient algorithms: DPG
- Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous Q-learning with actor network for approximate maximization: DDPG
- Kakade (2001). A Natural Policy Gradient: natural policy gradient
- Schulman, L., Moritz, Jordan, Abbeel (2015). Trust region policy optimization: TRPO
- Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization algorithms: PPO