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Model-Free RL

§ Value-based methods
• Learnt value function
• Implicit policy

§ Policy-based methods
• No value function
• Learnt policy

§ Actor-critic methods
• Learnt value function
• Learnt policy

Value functionPolicy

Policy-based
methods

Actor
critic

Value-based
methods
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Overview of Modern RL Methods
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Policy Gradient Intuition

• Good stuff is made more likely
• Bad stuff is made less likely
• Simply formalizes the notion of “trial and error”!
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Bias and Variance of Policy Gradient 

§ Unbiased estimation:

§ But suffers from high variance!

The main source 
of high variance
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Reducing Variance

§ Everything in the gradient whose expected is zero could be 
removed, without affecting the optimization, but could lead to 
lower gradient variance!

§ Causality trick
§ Discount factor
§ Baseline
§ Actor-critic
§ Optimization techniques:

• Natural gradient
• Trust region
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Reducing Variance: Causality

“reward to go”
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Reducing Variance: Discount Factor

Not the same
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Reducing Variance: Baselines
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Reducing Variance: Baselines
Faster convergence:
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Reducing Variance: Review

• Exploiting causality
• Future doesn’t affect the past

• Discount factor
• Two different version

• Baselines
• Analyzing variance for deriving optimal baselines

• Now: Introducing actor-critic methods!
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Policy Gradients so Far
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Improving Estimation of Reward to Go

much lower variance!

How to make a better estimate?
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Improving Estimation of Reward to Go
Further improvement: Adding a baseline!
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Improving Estimation of Reward to Go
Further improvement: Adding a baseline!
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Advantage Value
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Advantage Value Approximation
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Advantage Value Approximation
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Policy Evaluation 
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Policy Evaluation 
Monte Carlo estimation with function approximator:
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Policy Evaluation 
How to make a better estimate?
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Policy Evaluation 
Bootstrap Estimation with Function Approximator
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Batch Actor-Critic Algorithm
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Actor-Critic Algorithm: Architecture Design 
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Actor-Critic Algorithm: Batch vs. Online
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𝐷!"(𝜋#!(. |𝑠) ||𝜋# . 𝑠 ) ≤ 𝜖

𝐷!"(𝜋#!(. |𝑠) | 𝜋# . 𝑠 = 𝛴$𝜋#! 𝑎 𝑠 𝑙𝑜𝑔
𝜋#! 𝑎 𝑠
𝜋# 𝑎 𝑠

We are effectively constraining the ratio 
!!" 𝑎 𝑠
!! 𝑎 𝑠

• We don’t want the new policy to change a lot in an iteration.
Why?

• What is the effect of the constraint?
• Recall KL-Divergence:

Proximal Policy Optimization




