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Model-Free RL

§ Value-based methods
• Learnt value function
• Implicit policy

§ Policy-based methods
• No value function
• Learnt policy

§ Actor-critic methods
• Learnt value function
• Learnt policy

Value functionPolicy

Policy-based
methods

Actor
critic

Value-based
methods
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Overview of Modern RL Methods
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Policy Gradient Intuition

• Good stuff is made more likely
• Bad stuff is made less likely
• Simply formalizes the notion of “trial and error”!
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Bias and Variance of Policy Gradient 

§ Unbiased estimation:

§ But suffers from high variance!

The main source 
of high variance
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Reducing Variance

§ Everything in the gradient whose expected is zero could be 
removed, without affecting the optimization, but could lead to 
lower gradient variance!

§ Causality trick
§ Discount factor
§ Baseline
§ Actor-critic
§ Optimization techniques:

• Natural gradient
• Trust region
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Reducing Variance: Causality

“reward to go”
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Reducing Variance: Discount Factor

Not the same
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Reducing Variance: Baselines
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Analyzing Variance
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Reducing Variance: Baselines
Faster convergence:
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Reducing Variance: Review

• Exploiting causality
• Future doesn’t affect the past

• Discount factor
• Two different version

• Baselines
• Analyzing variance for deriving optimal baselines

• Now: Introducing actor-critic methods!
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Policy Gradients so Far
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Improving Estimation of Reward to Go

much lower variance!

How to make a better estimate?
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Improving Estimation of Reward to Go
Further improvement: Adding a baseline!
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Improving Estimation of Reward to Go
Further improvement: Adding a baseline!
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Advantage Value
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Advantage Value Approximation
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Advantage Value Approximation
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Policy Evaluation 
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Policy Evaluation 
Monte Carlo estimation with function approximator:
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Policy Evaluation 
How to make a better estimate?
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Policy Evaluation 
Bootstrap Estimation with Function Approximator



Lecture 10 - 24

Batch Actor-Critic Algorithm
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Actor-Critic Algorithm: Architecture Design 
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Actor-Critic Algorithm: Batch vs. Online
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𝐷!"(𝜋#!(. |𝑠) ||𝜋# . 𝑠 ) ≤ 𝜖

𝐷!"(𝜋#!(. |𝑠) | 𝜋# . 𝑠 = 𝛴$𝜋#! 𝑎 𝑠 𝑙𝑜𝑔
𝜋#! 𝑎 𝑠
𝜋# 𝑎 𝑠

We are effectively constraining the ratio 
!!" 𝑎 𝑠
!! 𝑎 𝑠

• We don’t want the new policy to change a lot in an iteration. 
Why?

• What is the effect of the constraint?
• Recall KL-Divergence:

Proximal Policy Optimization
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Proximal Policy Optimization

• Let’s design a simpler objective that directly constrains
!!" 𝑎 𝑠
!! 𝑎 𝑠

argmax
#!

𝐸{&~(",$~*"}𝑚𝑖𝑛

𝜋#! 𝑎 𝑠
𝜋# 𝑎 𝑠

𝐴*" 𝑠, 𝑎 ,

𝑐𝑙𝑖𝑝(
𝜋#! 𝑎 𝑠
𝜋# 𝑎 𝑠

, 1 − 𝜖, 1 + 𝜖)𝐴*" 𝑠, 𝑎

could be easily implemented 
with auto-diff packages
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Proximal Policy Optimization (cont.)
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Environments

Half Cheetah Hopper Inverted Double Pendulum Inverted Pendulum 

Reacher Swimmer Walker 2D
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PPO Results
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Soft Actor Critic



Lecture 10 - 33

Soft Policies

How does the Bellman equation change?
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Soft Policies
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Optimal Soft Policy

• The optimal soft policy (optimizing entropy 
augment objective) is:

𝜋∗(𝑎|𝑠) =
exp𝑄 𝑠, 𝑎

∑#" exp𝑄(𝑠, 𝑎$)
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Soft actor-critic
1.Q-function update
Update Q-function to evaluate current policy:

This converges to .

2. Update policy
Update the policy with gradient of information projection:

In practice, only take one gradient step on this objective

3. Interact with the world, collect more data
Haarnoja, et al. Soft Actor-Critic Algorithms
and Applications. ‘18
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Soft actor-critic
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Loss functions
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SAC Results
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Environments

Ant Humanoid
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Related Papers

• Williams (1992). Simple statistical gradient-following algorithms for connectionist 
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• Schulman, Moritz, L., Jordan, Abbeel (2016). High-dimensional continuous control 
using generalized advantage estimation: TD(𝜆) actor-critic
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