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Overview

* Introduction to model-based reinforcement learning

* What if we know the dynamics? How can we make
decisions?

 Stochastic optimization methods
* Monte Carlo tree search (MCTS)
* Trajectory optimization

* Goal: Understand how we can perform planning with
known dynamics models in discrete and continuous
spaces
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Recap: Model-Free RL
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Recap: Model-Free RL

@~
(s'|s, a)

W,

g
po(s1,ar,... ST73-T H at|StM

assume this is unknown
don’t even attempt to learn it

0* = arg meax ETNpe(T) [; T(St, at)]
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What if we knew the transition dynamics?

* Often we do know the dynamics
 Games (e.g., Atari games, chess, Go)
 Easily modeled systems (e.g., navigating a car)
e Simulated environments (e.g., simulated robots, video games)
e Often we can learn the dynamics
* System identification — fit unknown parameters of a known model
* Learning — fit a general-purpose model to observed transition data

Does knowing the dynamics make things easier?
Often, yes!
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Model-based RL

 Model-based reinforcement learning: learn the transition dynamics,
then figure out how to choose actions.

* Today: how can we make decisions if we know the dynamics?
* a. How can we choose actions under perfect knowledge of the system dynamics?
* b. Optimal control, trajectory optimization, planning
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The deterministic case

T

at,...,ar = arg aln’la');T ZT(St,at) s.t. At+1 — f(stv at)
S e
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The stochastic open-loop case

P(St+1 \St, at)

ZT s¢,ag)|ar, ..., ar

.....

why IS th|s suboptumal? :



The stochastic open-loop case
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open-loop vs. closed-loop case

closed-loop open-loop

only sentatt=1,
then it’s one-way!
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The stochastic open-loop case

form of 77

,°

neural net

time-varying linear

KtSt -+ kt \O(:b\
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Stochastic optimization

abstract away optimal control/planning:

a,...,ar =arg max J(ai,...,ar) A = argmax J(A)

ai,...,ar , A
Y

don’t care what this is

simplest method: guess & check  “random shooting method”

1. pick Aq,..., Ay from some distribution (e.g., uniform)

2. choose A; based on arg max; J(A;)
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Cross-entropy Method (CEM)

1. pick Aq,..., AN{Jrom some distributionde.g., uniform)

2. choose A; based on arg max; J(A;) can we do better?

J(A)

A

s

ot

cross-entropy method with continuous-valued inputs:

= 1. sample Ay,..., Ay from p(A)
2. evaluate J(Aq),...,J(AnN)
3. pick the elites A;, ,...,A;,, with the highest value, where M < N
4. refit p(A) to the elites A;,,..., A

M
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Pros and Cons

* Pros
e Could be very fast (Parallelizable)
* Extremely simple

* Cons
* Very harsh dimensionality limit
* Only open-loop planning
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