Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 11: Multi-armed Bandits Summarized By: Behnia Soleymani

- Planning with Uncertainty
 - Challenge: Model inaccuracies lead to uncertainty in predictions.
 - Solutions:
 - * Use a distribution over deterministic models to capture uncertainty.
 - * Alternative techniques: **moment matching**, **Bayesian Neural Networks (BNNs)**, or posterior estimation for uncertainty quantification.
- Model-Based RL with Ensembles
 - Example: Ensemble models (multiple models) outperform model-free methods after 40k steps (10 minutes of real time).
 - Advantage: Reduces overfitting and improves robustness via model diversity.
- Policy Optimization Challenges
 - Problem with Backpropagating into Policies:
 - * Parameter Sensitivity: Similar to shooting methods, leading to unstable training.
 - * Vanishing/Exploding Gradients: Analogous to training long RNNs with BPTT (no LSTM-like solutions here).
 - * **No Dynamic Programming**: Policy parameters couple all time steps, making second-order methods (e.g., LQR) inapplicable.
 - Workaround: Use derivative-free RL algorithms (model-free) with synthetic samples generated by the model.
- Curse of Long Rollouts
 - Issue: Errors accumulate over long simulated trajectories, degrading performance.
 - Solution: Use short rollouts (e.g., 1–5 steps) to mitigate error accumulation.
- Dyna Architecture:
 - Hybrid Approach: Combines model-free learning (e.g., Q-learning) with model-based planning.
 - Steps:
 - * Collect real-world experience (s, a, s', r).
 - * Learn a dynamics model $\hat{p}(s'|s, a)$.
 - * Generate synthetic trajectories via rollouts.
 - * Update the policy using both real and simulated data.
 - Advantage: Reduces real-world interaction time by leveraging simulated data.

Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 11: Multi-armed Bandits Summarized By: Behnia Soleymani

- Key Equation:

 $Q(s,a) \leftarrow Q(s,a) + \alpha \mathbb{E}_{s',r} \left[r + \max_{a'} Q(s',a') - Q(s,a) \right]$

- Advanced Methods:
 - Model-Based Policy Optimization (MBPO): Limits rollout length to balance error accumulation.
 - Model-Based Value Expansion (MVE): Uses short model rollouts to improve value estimates.
 - Key Workflow:
 - * Collect real data.
 - * Train dynamics model.
 - * Generate short rollouts.
 - * Update policy with model-free RL (e.g., policy gradient).

• Multi-armed Bandits (MAB)

- Definition:
 - * A sequential decision-making problem where an agent repeatedly chooses between K actions ("arms") with unknown reward distributions.
 - * The goal is to **maximize cumulative reward** over time by learning which arms yield the highest rewards.

- Core Challenge:

- * Exploration vs. Exploitation Trade-off:
 - · Exploration: Gathering information about arms with uncertain rewards.
 - · Exploitation: Leveraging known information to maximize immediate rewards.
- * The agent must balance these two to avoid suboptimal long-term performance.
- Action Value $(q_*(a))$:
 - * The **expected reward** of selecting arm *a*, defined as:

$$q_*(a) = \mathbb{E}[R_t \mid A_t = a]$$

where R_t is the reward at time t, and A_t is the action taken.

- * The agent's goal is to estimate $q_*(a)$ for each arm and select the arm with the highest value.
- Key Characteristics:
 - * Stateless: No state transitions or state space; decisions are independent.

Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 11: Multi-armed Bandits Summarized By: Behnia Soleymani

- * Immediate Rewards: Rewards depend only on the chosen arm.
- * Foundational: Basis for complex RL algorithms.

• Differences Between MAB and Normal RL Problems

- State Space:
 - * MAB: Stateless; no transitions.
 - * Normal RL: Involves state transitions and sequential decision-making.
- Reward Structure:
 - * MAB: Immediate rewards.
 - * **Normal RL**: Delayed rewards (e.g., discounted cumulative rewards).
- Exploration vs. Exploitation:
 - * MAB: Focuses entirely on the trade-off for fixed arms.
 - * Normal RL: Balances exploration-exploitation while learning state-action policies.
- Complexity:
 - * **MAB**: Single-step decisions.
 - * Normal RL: Multi-step planning and state impact analysis.
- Applications:
 - * **MAB**: Clinical trials, A/B testing, online advertising.
 - * Normal RL: Robotics, autonomous driving.
- Estimating $q_*(a)$
 - Sample-Average Method:
 - * Estimate $q_*(a)$ by averaging rewards:

 $Q_t(a) = \frac{\text{Sum of rewards when } a \text{ is chosen}}{\text{Number of times } a \text{ is chosen}}$

* Converges to $q_*(a)$ as trials increase.

• Clinical Trials as a Bandit Problem

- Analogy:
 - * Arms = treatments; rewards = patient outcomes (e.g., survival).
 - * Goal: Identify optimal treatments while minimizing exposure to inferior options.

Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 11: Multi-armed Bandits Summarized By: Behnia Soleymani

- Adaptive Design:

- * Dynamically assign patients to better-performing treatments as data is collected.
- * Adapts unlike traditional fixed randomization.
- Advantages:
 - * **Ethical**: Reduces exposure to inferior treatments.
 - * Efficiency: Accelerates optimal treatment identification.
- Challenges:
 - \ast Non-stationary rewards, delayed outcomes, and small sample sizes.