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Thompson sampling
• After discussing action selection strategies such as Epsilon-Greedy and Upper Confidence Bound (UCB),

we now consider Thompson Sampling, an approach to decision-making under uncertainty. Unlike
methods based on point estimates of expected rewards, Thompson Sampling maintains a probability
distribution over the potential reward of each action.This method has been shown to perform effectively
in practice, often achieving near-optimal regret in stochastic environments.

• In essence, Thompson Sampling relies on a Bayesian estimation, where we aim to estimate the
expected reward for each action k, denoted as θk = E[Rk]. Given the observed rewards from past actions,
we compute the posterior distribution over θk, expressed as P (θk | Ra(1)

t = r1, . . . , R
a(T )
t = rT ), which

captures our updated belief about the expected reward after observing data.

• Thompson Sampling is conceptually similar to the UCB approach in that both aim to balance exploration
and exploitation. However, while UCB constructs a confidence interval around point estimates to guide
action selection, Thompson Sampling directly models the entire posterior distribution of the expected
rewards, allowing for a more probabilistic and principled exploration strategy.

• After estimating the posterior distributions of the expected rewards, the simplest action selection method
is sampling: draw one sample from each of the k distributions and select the action with the highest
sample.

• Computing the exact posterior distribution is often intractable in real-world scenarios. However, when
the prior and likelihood are conjugate, the posterior belongs to the same family as the prior, making the
update process analytically straightforward. A common example is using a Beta prior with a Bernoulli
likelihood.

• Unlike UCB, which takes a more rigid or deterministic approach to uncertainty through confidence
bounds, Thompson Sampling deals with uncertainty in a much softer and more probabilistic manner.
In fact, if Bayesian inference were computationally trivial, Thompson Sampling would be an ideal strategy
for action selection.

Bellman’s Optimality Equation
• Bellman’s Optimality Equation provides a fundamental recursive characterization of the value function

under an optimal policy. It serves as the cornerstone for many algorithms in RL.

Assume a stochastic reward function:

Pr(St+1 = s′, Rt+1 = r | St = s, At = a), ∀s, s′ ∈ S, r ∈ R, a ∈ A

This is abbreviated as:
p(s′, r | s, a)

• The optimal action-value function q∗(s, a) is defined as:

q∗(s, a) = max
π

E [Gt | St = s, At = a]

= max
π

E [Rt+1 + γGt+1 | St = s, At = a]

= E [Rt+1 | St = s, At = a] + γmax
π

E [Gt+1 | St = s, At = a]
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Define the return Gt as:

Gt =
∞∑

t′=t+1

γt′−t−1Rt′

• For the expected immediate reward:

E[Rt+1 | St = s, At = a] =
∑
r

∑
s′

r · p(s′, r | s, a)

Recall the law of total expectation:

E[f(X,Y )] =
∑
x

E[f(X,Y ) | X = x] · P(X = x)

For the expected return:

E[Gt+1 | St = s, At = a] =
∑
s′,a′

p(s′, a′ | s, a) · E[Gt+1 | St+1 = s′, At+1 = a′]

=
∑
s′,a′

p(s′ | s, a) · p(a′ | s′, s, a) · E[Gt+1 | St+1 = s′, At+1 = a′]

=
∑
s′,a′

p(s′ | s, a) · π(a′ | s′) · qπ(s′, a′)

=
∑
s′

p(s′ | s, a)
∑
a′

π(a′ | s′) · qπ(s′, a′)

• Since the optimal policy chooses the action that maximizes the action-value, we can move the max
inside the summation:

q∗(s, a) =
∑
r

r
∑
s′

p(s′, r | s, a) + γmax
π

∑
s′

p(s′ | s, a)
∑
a′

π(a′ | s′)qπ(s′, a′)

⇒ q∗(s, a) =
∑
r

r
∑
s′

p(s′, r | s, a) + γmax
π

∑
s′

p(s′ | s, a)max
a′

qπ(s
′, a′)

• The expression
∑

a′ π(a
′ | s′)qπ(s′, a′) is a convex combination of action-values, since π(a′ | s′) ∈

[0, 1] and
∑

a′ π(a
′ | s′) = 1.

By the property of convex combinations:∑
a′

π(a′ | s′)qπ(s′, a′) ≤ max
a′

qπ(s
′, a′)

So, the maximum over all policies is achieved by a deterministic policy that selects the action with the
highest q-value:

max
π

∑
a′

π(a′ | s′)qπ(s′, a′) = max
a′

q∗(s
′, a′)
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