Deep Reinforcement Learning (Sp25)

Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 14: Value-based Theory Summarized By: Benyamin Naderi

• Optimal $q^{\star}(s, a)$ existence Proof

Let's prove that there exists a solution for bellman optimality equation.

Recall from the previous lecture that we had bellman equation and we could seek for a solution which is $q^{\star}(s, a)$:

$$q_*(s,a) = \sum_{r,s'} p(s',r \mid s,a) \left(r + \gamma \max_{a'} q_*(s',a') \right)$$

Definition 1. Let (X, d) be a metric space. A mapping $T : X \to X$ is a contraction mapping, or contraction, if there exists a constant c, with $0 \le c < 1$, such that

$$d(T(x), T(y)) \le c \, d(x, y) \tag{1.1}$$

for all $x, y \in X$.

Thus, a contraction maps points closer together. In particular, for every $x \in X$, and any r > 0, all points y in the ball $B_r(x)$, are mapped into a ball $B_s(Tx)$, with s = cr.

Theorem 1 (Contraction mapping). If $T : X \to X$ is a contraction mapping on a complete metric space (X, d), then there is exactly one solution $x \in X$ of T(x) = x.

Proof. The proof is constructive, meaning that we will explicitly construct a sequence converging to the fixed point. Let x_0 be any point in X. We define a sequence (x_n) in X by

$$x_{n+1} = Tx_n \qquad \text{for } n \ge 0.$$

To simplify the notation, we often omit the parentheses around the argument of a map. We denote the *n*th iterate of T by T^n , so that $x_n = T^n x_0$.

First, we show that (x_n) is a Cauchy sequence. If $n \ge m \ge 1$, then from (1.1) and the triangle

inequality, we have

$$d(x_n, x_m) = d(T^n x_0, T^m x_0)$$

$$\leq c^m d(T^{n-m} x_0, x_0)$$

$$\leq c^m \left[d(T^{n-m} x_0, T^{n-m-1} x_0) + d(T^{n-m-1} x_0, T^{n-m-2} x_0) + \dots + d(T x_0, x_0) \right]$$

$$\leq c^m \left[\sum_{k=0}^{n-m-1} c^k \right] d(x_1, x_0)$$

$$\leq c^m \left[\sum_{k=0}^{\infty} c^k \right] d(x_1, x_0)$$

$$\leq \left(\frac{c^m}{1-c} \right) d(x_1, x_0),$$

For any $\epsilon > 0$, if $N \ge \frac{\log(\epsilon(1-\alpha)) - \log C}{\log \alpha}$, where $C = d(x_1, x_0)$, then $d(x_n, x_m) \le \epsilon$ for all $n, m \ge N$. Hence, (x_n) is a Cauchy sequence. Since X is complete, (x_n) converges to a limit $x \in X$. In the other words, since (x_n) is Cauchy, it converges

The fact that the limit x is a fixed point of T follows from the continuity of T:

$$Tx = T \lim_{n \to \infty} x_n = \lim_{n \to \infty} Tx_n = \lim_{n \to \infty} x_{n+1} = x.$$

Finally, if x and y are two fixed points, then

$$0 \le d(x, y) = d(Tx, Ty) \le cd(x, y).$$

Since c < 1, we have d(x, y) = 0, so x = y, and the fixed point is unique.

T is the Bellman Operator

Definition 2. Define the operator T as:

$$Tq(s,a) = \sum_{r,s'} p(r,s' \mid s,a) \left(r + \gamma \max_{a'} q(s',a') \right),$$

 Now that the Bellman operator has been defined, we proceed to show that it is a contraction mapping. This result will serve as a key lemma in establishing the convergence of the value iteration algorithm.

Lemma 1. For a finite MDP, the mapping T in Eq. (10) is a contraction mapping.

Proof. We consider the complete metric space $(\mathbb{R}^{|S| \times |A|}, d)$, where $d(q_1, q_2) = ||q_1 - q_2||_{\infty}$ for any $p, q \in \mathbb{R}^{|S| \times |A|}$. Then,

$$\begin{aligned} \|Tq_{1} - Tq_{2}\|_{\infty} &= \max_{s,a} |Tq_{1}(s,a) - Tq_{2}(s,a)| \\ &= \gamma \max_{s,a} \left| \sum_{r,s'} p(r,s' \mid s,a) \left(\max_{a'} q_{1}(s',a') - \max_{a'} q_{2}(s',a') \right) \right| \\ &\leq \gamma \max_{s,a} \sum_{r,s'} p(r,s' \mid s,a) \left| \max_{a'} q_{1}(s',a') - \max_{a'} q_{2}(s',a') \right| \\ &\leq \gamma \max_{s,a} \sum_{s'} p(s' \mid s,a) \max_{a'} |q_{1}(s',a') - q_{2}(s',a')| \\ &\leq \gamma \max_{s,a} \max_{s'} \max_{a'} |q_{1}(s',a') - q_{2}(s',a')| \\ &= \gamma \max_{s',a'} |q_{1}(s',a') - q_{2}(s',a')| \\ &= \gamma \|q_{1} - q_{2}\|_{\infty}, \end{aligned}$$

_	
Е	
L.,	