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Summary of Lecture 17: Policy-based Theoretical
Guarantees

Let an episodic Markov decision process (MDP) be given by the tuple
M - (87A7P7T777p0)7

where S and A are measurable state- and action-spaces, P(s'|s,a) is the transition kernel, r : S x A — R is
the (possibly stochastic) reward, 0 < v < 1 is the discount factor and pg the initial-state distribution. For any
stationary, stochastic policy 7y (a|s) with parameters § € R? we write

J(0) = Errr, [Zfio v (st at)}, no(s) = > 1207 Praylse = 5]

for its expected return and its discounted state-occupancy measure, respectively. The action-value and state-value
functions are

[e.9]

> (s ar)

t=0

Qnry (s,a) = Er,

S0 =S, ap = (I] 5 V7r9 (S) = E(ZNTK'Q [ng (87 (L)]
Throughout, gradients are taken with respect to the policy parameters unless stated otherwise.

Recap: The Policy-Gradient Theorem

The classical policy-gradient theorem asserts

Vo (0) = Esny, a~m [Volog mo(als) Qry (s, a)] -

Because the expectation is taken under the state distribution 79 induced by the very same policy being opti-
mised, the estimator remains unbiased even when trajectories are gathered on-policy. In practice, one uses the
variance-reduced form

V0 J(0) = Eqa| Vo log mo(als) (Qr, (s,0) = b(s))]

A7r9 (Sva)

where b(s) is any baseline independent of a. Choosing b(s) = V,(s) yields the advantage function A, (s, a).

Policy Gradient as Generalised Policy Iteration

Policy iteration alternates policy evaluation and greedy improvement. A first-order algorithm that performs one
gradient-based improvement step per evaluation round may likewise be interpreted as a soft variant of policy
iteration:

1. Evaluation step. Estimate ,, or A;, for the current policy 7.

2. Improvement step. Update parameters according to

Or+1 = O + g, VeJ(@)‘ezek.

The following proposition formalises the intuitive claim that, for sufficiently small step-size, a policy-gradient step
realises policy improvement.

Proposition 18.1 (Guaranteed Improvement under Step-Size Constraint). Let L(0;0;) = J(0x)+V.J(0x)" (6—
0).) be the local linearisation of the objective. If 0,1 satisfies

DKL(W% | 7r9k+1) <
1
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for a constant C' > 0 bounding the advantage function, then J(0x+1) > J(0).

Proof. The performance-difference lemma gives

T(Ors1) — T(0) = —

11—~ ESNWHI , AT, [Amak (s, a)] .

Replacing 7y, , by 7, introduces a distribution-mismatch error bounded via

v
‘7791@+1 (5) — 7oy, (S)‘ < ﬁ ;}X DTV(W9k+1("SI) ” 7T9k(“5/))'

Pinsker's inequality relates total-variation and Kullback—Leibler divergences, producing a second-order penalty in
the step-size. Collecting terms yields the claimed sufficient condition. [J

Bounding Distribution Shift

Because policies are parametrised continuously, successive iterates differ only slightly. Let
D = max Dyy(mg, ,, (-|s) | 7, (5)).

Then one obtains the occupancy-measure perturbation bound
’7 —
[ o, < (1— )2 D

Consequently, the performance difference decomposes into
1

1—7

TV
optimistic local model penalty

4y _
E?]ekﬂrek“ [Aﬂek (s, a)] - WRmaxD .

The explicit penalty term motivates either constraining D (TRPO) or augmenting the objective with a soft
regulariser (PPO).

From Hard to Soft Policy Iteration: The Maximum-Entropy Principle

Classical RL seeks a deterministic optimal policy. The maximum-entropy framework augments the return with
an entropy bonus:

Jsoft(e) =E; [Z 7t (T<3ta at) + 047'[(70("31%»)}7
t=0

where o« > 0 controls the exploration—exploitation trade-off. The associated soft-()-function satisfies the soft
Bellman equation

Q*(s,a) =r(s,a) +yEg[V*(s)], V*(s) = alogAexp(éQ*(s,a/)) da’.

The Soft-Actor-Critic (SAC) Algorithm

Critic Update

Given experience replay buffer D, minimise the soft Bellman residual
. 2
£0() = E(s sy (Quls,a) = (r,5))°].

Q(r, 8/) =7+ 7Ea’~7r9(~\s’)[Qzﬂ(slv CLI) — alog 7[‘9(&,|S/)],
with a slowly moving target network ;. Under standard conditions, fixed-point iteration on this objective

converges to the soft optimal Q™.
2
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Actor Update

The policy parameters are updated by one step of information projection,

VoJsoft(0) = Esup, aNM[Vg log g (als) (a log mg(als) — Qqy (s, a))].

Equivalently, my is the solution of

grlei%[lESND[DKL (“("3) | eXP((Qw(Sa )= Cs)/a))]’

with log-partition term ¢, ensuring normalisation. In practice, the gradient is estimated using the reparametrisation

trick: for Gaussian policies my(-|s) = N (ua(s), Xo(s)) one writes a = pg(s) + Zé/z(s) €, e ~N(0,1).

Temperature Adaptation

The entropy-temperature a can itself be treated as a learnable parameter with objective
La(a) = Eqrory(fs)|— (log m(als) + H)],
driving the expected entropy toward a user-specified target . Gradient descent on o preserves the monotonically
increasing nature of Jgoft.
Soft Policy Evaluation, Improvement and Iteration
Soft Policy Evaluation iteratively applies the soft Bellman operator
Tasi@ =1+ VEg 0nn]Q(s, a) — alogw(d'|s)].

The operator is a contraction in the sup-norm with modulus -, guaranteeing unique fixed-point Q.

Soft Policy Improvement. Given @, construct
7rnew('|3) X eXp(é Qﬂ'(87 ))7

which is provably better in the soft-return sense: Jeoft (Tnew) > Jooft ().

Soft Policy Iteration alternates evaluation and improvement, converging to a policy that maximises the maximum-entropy
objective. SAC instantiates an approximate version wherein only a single gradient step is taken in each stage.

Loss-Function Summary

* Critic: Lo(¥) =2 (Qy —9)*
 Actor: L;(0) = Esop, confalog mg(ag(s, €)|s) — Qu(s, ag(s,€))].
» Temperature: L,(a) = —a (logmg(als) + H).

Gradient noise is tempered by large-batch replay; target networks and Polyak averaging further stabilise training.
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