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Let an episodic Markov decision process (MDP) be given by the tuple

M =
(
S,A, P, r, γ, ρ0

)
,

where S and A are measurable state- and action-spaces, P (s′|s, a) is the transition kernel, r : S × A → R is
the (possibly stochastic) reward, 0 < γ < 1 is the discount factor and ρ0 the initial-state distribution. For any
stationary, stochastic policy πθ(a|s) with parameters θ ∈ Rd we write

J(θ) = Eτ∼πθ
[∑∞

t=0 γ
tr(st, at)

]
, ηθ(s) =

∑∞
t=0 γ

t Prπθ [st = s]

for its expected return and its discounted state-occupancy measure, respectively. The action-value and state-value
functions are

Qπθ(s, a) = Eπθ

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
, Vπθ(s) = Ea∼πθ [Qπθ(s, a)].

Throughout, gradients are taken with respect to the policy parameters unless stated otherwise.

Recap: The Policy-Gradient Theorem
The classical policy-gradient theorem asserts

∇θJ(θ) = Es∼ηθ, a∼πθ [∇θ log πθ(a|s)Qπθ(s, a)] .

Because the expectation is taken under the state distribution ηθ induced by the very same policy being opti-
mised, the estimator remains unbiased even when trajectories are gathered on-policy. In practice, one uses the
variance-reduced form

∇θJ(θ) = Es,a
[
∇θ log πθ(a|s)

(
Qπθ(s, a)− b(s)

)︸ ︷︷ ︸
Aπθ

(s,a)

]
,

where b(s) is any baseline independent of a. Choosing b(s) = Vπθ(s) yields the advantage function Aπθ(s, a).

Policy Gradient as Generalised Policy Iteration
Policy iteration alternates policy evaluation and greedy improvement. A first-order algorithm that performs one
gradient-based improvement step per evaluation round may likewise be interpreted as a soft variant of policy
iteration:

1. Evaluation step. Estimate Qπk or Aπk for the current policy πk.

2. Improvement step. Update parameters according to

θk+1 = θk + αk∇θJ(θ)
∣∣
θ=θk

.

The following proposition formalises the intuitive claim that, for sufficiently small step-size, a policy-gradient step
realises policy improvement.

Proposition 18.1 (Guaranteed Improvement under Step-Size Constraint). Let L(θ; θk) = J(θk)+∇J(θk)⊤(θ−
θk) be the local linearisation of the objective. If θk+1 satisfies

DKL

(
πθk ∥πθk+1

)
≤ 2(1− γ)

C
α2
k
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for a constant C > 0 bounding the advantage function, then J(θk+1) ≥ J(θk).

Proof. The performance-difference lemma gives

J(θk+1)− J(θk) =
1

1− γ
Es∼ηθk+1

, a∼πθk+1

[
Aπθk (s, a)

]
.

Replacing ηθk+1
by ηθk introduces a distribution-mismatch error bounded via∣∣ηθk+1

(s)− ηθk(s)
∣∣ ≤ γ

1− γ
max
s′

DTV

(
πθk+1

(·|s′) ∥πθk(·|s
′)
)
.

Pinsker’s inequality relates total-variation and Kullback–Leibler divergences, producing a second-order penalty in
the step-size. Collecting terms yields the claimed sufficient condition.□

Bounding Distribution Shift
Because policies are parametrised continuously, successive iterates differ only slightly. Let

D̄ = max
s
DTV

(
πθk+1

(·|s) ∥πθk(·|s)
)
.

Then one obtains the occupancy-measure perturbation bound∥∥ηθk+1
− ηθk

∥∥
1
≤ γ

(1− γ)2
D̄.

Consequently, the performance difference decomposes into
1

1− γ
Eηθk ,πθk+1

[
Aπθk (s, a)

]
︸ ︷︷ ︸

optimistic local model

− 4γ

(1− γ)2
RmaxD̄︸ ︷︷ ︸

penalty

.

The explicit penalty term motivates either constraining D̄ (TRPO) or augmenting the objective with a soft
regulariser (PPO).

From Hard to Soft Policy Iteration: The Maximum-Entropy Principle
Classical RL seeks a deterministic optimal policy. The maximum-entropy framework augments the return with
an entropy bonus:

Jsoft(θ) = Eτ
[ ∞∑
t=0

γt
(
r(st, at) + αH

(
πθ(·|st)

))]
,

where α > 0 controls the exploration–exploitation trade-off. The associated soft-Q-function satisfies the soft
Bellman equation

Q⋆(s, a) = r(s, a) + γ Es′
[
V ⋆(s′)

]
, V ⋆(s) = α log

∫
A
exp

(
1
αQ

⋆(s, a′)
)
da′.

The Soft-Actor-Critic (SAC) Algorithm

Critic Update

Given experience replay buffer D, minimise the soft Bellman residual

LQ(ψ) = E(s,a,r,s′)∼D

[(
Qψ(s, a)− ŷ(r, s′)

)2]
,

ŷ(r, s′) = r + γ Ea′∼πθ(·|s′)
[
Qψ̄(s

′, a′)− α log πθ(a
′|s′)

]
,

with a slowly moving target network Qψ̄. Under standard conditions, fixed-point iteration on this objective
converges to the soft optimal Q⋆.
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Actor Update

The policy parameters are updated by one step of information projection,

∇θJsoft(θ) = Es∼D, a∼πθ
[
∇θ log πθ(a|s)

(
α log πθ(a|s)−Qψ(s, a)

)]
.

Equivalently, πθ is the solution of

min
π∈Π

Es∼D
[
DKL

(
π(·|s) ∥ exp

(
(Qψ(s, ·)− cs)/α

))]
,

with log-partition term cs ensuring normalisation. In practice, the gradient is estimated using the reparametrisation
trick: for Gaussian policies πθ(·|s) = N (µθ(s),Σθ(s)) one writes a = µθ(s) + Σ

1/2
θ (s) ϵ, ϵ ∼ N (0, I).

Temperature Adaptation

The entropy-temperature α can itself be treated as a learnable parameter with objective

Lα(α) = Ea∼πθ(·|s)
[
−α

(
log πθ(a|s) + H̄

)]
,

driving the expected entropy toward a user-specified target H̄. Gradient descent on α preserves the monotonically
increasing nature of Jsoft.

Soft Policy Evaluation, Improvement and Iteration
Soft Policy Evaluation iteratively applies the soft Bellman operator

T π
softQ = r + γ Es′,a′∼π

[
Q(s′, a′)− α log π(a′|s′)

]
.

The operator is a contraction in the sup-norm with modulus γ, guaranteeing unique fixed-point Qπ.

Soft Policy Improvement. Given Qπ, construct

πnew(·|s) ∝ exp
(

1
α Qπ(s, ·)

)
,

which is provably better in the soft-return sense: Jsoft(πnew) ≥ Jsoft(π).

Soft Policy Iteration alternates evaluation and improvement, converging to a policy that maximises the maximum-entropy
objective. SAC instantiates an approximate version wherein only a single gradient step is taken in each stage.

Loss-Function Summary

• Critic: LQ(ψ) = 1
2 (Qψ − ŷ)2.

• Actor: Lπ(θ) = Es∼D, ϵ∼N
[
α log πθ(aθ(s, ϵ)|s)−Qψ(s, aθ(s, ϵ))

]
.

• Temperature: Lα(α) = −α (log πθ(a|s) + H̄).

Gradient noise is tempered by large-batch replay; target networks and Polyak averaging further stabilise training.

3

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

