
Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 19: Exploration Methods
Summarized By: Behnia Soleymani

• Why is Exploration Hard? Sparse Rewards & Long Time Horizons

– Easy Problems (e.g., Breakout): Rewards are frequent (hitting bricks). Simple strategies often
work.

– Hard Problems (e.g., Montezuma’s Revenge):

∗ Sparse Rewards: Meaningful rewards (getting a key, opening a door) are rare and only occur
after specific, sometimes long, sequences of actions.

∗ Temporally Extended Tasks: The actions needed to get a reward are separated by many
steps where nothing obviously good happens.

∗ Complex Dependencies: Often requires solving multiple sub-tasks in a specific order (get
key → go to door → use key).

∗ Misleading Feedback: Bad outcomes (like hitting a skull) might give zero reward, not
negative, making it hard to learn they are bad quickly.

– Humans use understanding (key opens door), but RL agents start from scratch.

• Simple Exploration Can Fail: The Epsilon-Greedy Limitation

– The Problem in Complex Tasks: If you need to master k sequential sub-tasks and then explore
for the (k + 1)th:

∗ You must exploit correctly for roughly k steps, then explore correctly at the (k + 1)th step.

∗ The probability of doing this is roughly (1− ϵ)kϵ1 (assuming O(k) exploit steps, O(1) explore
step). This probability decreases exponentially as the sequence length k increases. so epsilon-
greedy performs poorly on tasks requiring long, specific action sequences.

∗ Example: For ϵ = 0.1, k = 5, the chance is only ≈ 6%. For ϵ = 0.5, k = 5, it’s ≈ 3%. It
becomes very unlikely to explore the right thing at the right time.

• Measuring Exploration Success: Regret

– How good is an exploration strategy? We can measure its Regret.

– Definition: Regret compares the total reward the agent actually got to the reward it could have
gotten if it knew the best strategy from the start.

– Formula:

Reg(T ) = T · E[r(a∗)]−
T∑
t=1

r(at)

∗ T : Total number of time steps (or episodes).

∗ E[r(a∗)]: Expected reward of the single best fixed action/policy (a∗) in hindsight.

∗
∑

r(at): The sum of actual rewards received by the agent’s chosen actions at over time.

– Goal: Design exploration algorithms with low (ideally sub-linear, like O(log T )) regret.

1

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/


• Learning from Simplified Problems: Multi-Armed Bandits (MAB)

– Bandits: A simpler RL setting with no states, just actions ("arms"). Choose an arm, get a reward
from an unknown distribution for that arm. Focuses purely on exploration vs. exploitation.

– Two powerful strategies emerged from bandit research:

∗ A) UCB:

· Mechanism: Estimate the average reward µ̂a for each arm a. Add a bonus based on
uncertainty. Choose the arm maximizing this optimistic estimate. choose arm At at time
t:

At = argmax
a

[
µ̂a(t) + c

√
ln(t)

Nt(a)

]

∗ B) Posterior Sampling (Thompson Sampling):

· Principle: Act according to the probability that an action is the best one, based on
current beliefs.

· Mechanism:

1. Maintain a belief (posterior probability distribution p̂(θ)) over the unknown reward
parameters θ of the arms.

2. At each step, sample a possible set of parameters θ̃ from this belief: θ̃ ∼ p̂(θ).

3. Choose the action that would be best if θ̃ were the true parameters.

4. Observe the reward and update the belief p̂(θ) using Bayesian methods.

· Intuition: Naturally balances exploration/exploitation. Actions likely to be optimal are
chosen often, but uncertain actions still get chances proportional to the belief that they
might be optimal. Often performs very well empirically.

• Exploration in Deep RL (Bootstrapped DQN)

– Challenge: How to apply Thompson Sampling when the “parameters” are the weights of a
complex Deep Q-Network (DQN)? Maintaining a full probability distribution over network weights
is hard.

– Solution: Bootstrapped DQN (inspired by Thompson Sampling):

∗ Bootstrap: A statistical method. Create multiple (K) training datasets by sampling with
replacement from the main replay buffer D.

∗ Multiple Heads: Train K different Q-value “heads” (Q1, . . . , QK), often sharing lower net-
work layers. Each head Qk is trained primarily on its corresponding bootstrapped dataset Dk.
This ensemble approximates the belief over possible Q-functions.

∗ Algorithm:

2



1. At the start of each episode, randomly pick one head k (e.g., k ∼ Uniform{1, . . . , K}).

2. For the entire episode, act consistently based only on the chosen head: at = argmax
a

Qk(st, a).

3. Store the experiences (st, at, rt+1, st+1) in the replay buffer.

4. During training, update each head Qk using data, often guided by which data corresponds
to its bootstrap sample (using masks).

– Why it Works:

∗ Deep and Temporally Consistent Exploration: By committing to one (randomly chosen)
strategy Qk for a whole episode, the agent explores coherently. It’s more likely to follow
through on long, potentially rewarding sequences compared to the random, step-by-step ex-
ploration of ϵ-greedy.

∗ Diversity: The different heads learn diverse strategies and diverse hypothesis about the
enviroment, leading to varied exploration over time.

– Result: Bootstrapped DQN significantly outperforms standard DQN on hard exploration games
like Montezuma’s Revenge without needing explicit reward bonuses.

3


