
Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 20: Exploration Methods
Summarized By: Behnia Soleymani

• Recap:

– Reinforcement Learning agents learn through interaction, aiming to maximize rewards. However,
their efficacy is fundamentally challenged in environments where rewards are sparse or delayed,
a common characteristic of complex, realistic tasks. The classic comparison between the read-
ily learnable Breakout (with its dense rewards) and the historically challenging Montezuma’s
Revenge (requiring long, unrewarded action sequences) perfectly illustrates this point. Naive
exploration strategies, like epsilon-greedy, which rely on occasional random actions, are statis-
tically unlikely to uncover the intricate, temporally extended tasks needed to succeed in such
sparse-reward settings. The probability of executing a long, specific sequence correctly and then
taking the right exploratory action diminishes exponentially with the sequence length. This ne-
cessitates more sophisticated approaches that go beyond simple randomness, addressing the core
exploration-exploitation dilemma by intelligently seeking out the unknown.

• Intrinsic Motivation: Creating Internal Drive

– For complex environments modeled as Markov Decision Processes (MDPs), where the sheer size
or continuous nature of the state space makes visiting the exact same state twice improbable, the
central strategy is intrinsic motivation. Instead of relying solely on the external reward r(s, a),
the agent is driven by a modified reward signal: r+(s, a) = r(s, a) + B(s, a). Here, B(s, a) is
an exploration bonus, an internal reward generated by the agent itself. This bonus is designed
to be high for state-action pairs deemed "novel" or associated with high "uncertainty," effectively
providing a dense learning signal that encourages the agent to venture into less-understood parts
of the environment, even when external rewards are absent. The critical challenge then becomes
designing effective mechanisms to quantify this novelty or uncertainty to calculate B(s, a).

• Quantifying Novelty: Diverse Mechanisms in Practice

– Density Estimation (Pseudo-Counts): This approach conceptualizes novelty based on the
statistical likelihood of encountering a state given past experience. Practically, a density model
(pθ) is trained on the states D visited so far. When the agent encounters a new state st, this model
is queried to obtain pθ(st). A low probability signifies that states similar to st are rare in the agent’s
history, indicating novelty. This probability is then mathematically converted into a pseudo-
count N̂(st) (where low probability corresponds to a low count). The bonus is typically inversely
related to this count, often B(st) ∝ 1/

√
N̂(st), rewarding visits to low-density regions. This

requires maintaining and periodically retraining the density model pθ, which can be computationally
demanding. (E.g., CTS model).

– Hashing (Discrete Pseudo-Counts): As an alternative to potentially complex density modeling,
hashing maps the high-dimensional state s onto a discrete hash code ϕ(s). The core idea is that a
well-designed hash function ϕ (which can be fixed or learned) groups similar states under the same
code. The system then simply maintains counts N(code) for each hash code encountered. Upon
visiting state st and computing its code codet = ϕ(st), the current count N(codet) is retrieved. A
low count implies that states mapping to this code are infrequent and thus novel. The bonus B(st)
is calculated based on this count (e.g., B(st) ∝ 1/

√
N(codet)), and the count is subsequently

incremented. Its effectiveness hinges on the quality of the hash function in capturing relevant state
1

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/


similarities (e.g., learned hashes in Tang et al.).

– Discriminative Novelty (Exemplar Models - EX2): This method reframes novelty not through
density but through distinguishability. A state st is considered novel if it is easily differentiated
from previously seen states D. Practically, an amortized classifier network Dnet is trained.
Given the current state st and a batch of distractor states {sj} sampled from the history buffer
D, Dnet learns to identify st. The novelty signal is then derived from how confidently the trained
classifier identifies st when compared against itself, pnovelty = Dnet(st, st). High confidence implies
st stood out from the distractors D, indicating novelty. The bonus B(st) is calculated as an
increasing function of this confidence score. This approach cleverly uses discriminative learning to
implicitly gauge similarity and novelty.

– Prediction Error (Heuristic Novelty - RND): This popular and often highly effective heuristic
equates novelty with surprise, measured as the error in predicting some aspect of the environment.
The leading variant, Random Network Distillation (RND), employs two networks: a fixed,
randomly initialized target network fϕ and a predictor network fθ trained to mimic the target’s
output. When the agent visits state st, both networks produce outputs: target = fϕ(st) and
prediction = fθ(st). The prediction error, B(st) = ∥prediction − target∥2, serves directly as
the exploration bonus. The predictor network fθ is subsequently trained (on batches of states) to
minimize this error for the states it sees. Because fϕ is fixed and random, fθ can only learn to
predict accurately for familiar states; novel states inevitably result in high prediction errors (high
bonuses), driving exploration towards surprising areas.

• Go-Explore: Remembering and Returning for Hard Exploration

– Specifically designed for hard-exploration problems with extremely sparse or deceptive rewards
(e.g., Montezuma’s Revenge, Pitfall!), Go-Explore introduces a powerful strategy based on explic-
itly remembering promising states and intentionally returning to them to explore further.
This approach effectively decouples the challenge of discovering rare states from learning a final
policy, operating through two distinct phases.

– Phase 1: Explore and Build the Archive: This initial phase is dedicated purely to discovery,
aiming to find as many distinct and high-performing states as possible. It relies on maintaining
an archive which maps a compressed state representation (cells) to the best-performing state
found within that cell and its associated trajectory. Cells can be derived from various features like
downscaled images or object coordinates. The core exploration loop proceeds as follows:

(i) Selecting a promising cell from the archive based on criteria like score or novelty.
(ii) (Go) Reliably returning the environment to the specific, high-performing state saved for that

cell, which often necessitates simulator state resetting.
(iii) (Explore) Performing exploration (e.g., random actions) from that restored state for a limited

duration.
(iv) Updating the archive if this exploration yields a superior result (e.g., higher score for an existing

cell, or discovery of a state in a new cell).

The outcome of this phase is an archive rich with diverse states, including potentially very high-
reward ones, and the exact trajectories required to reach them under simulation conditions.

2



– Phase 2: Robustification: Following exploration, this phase aims to distill the knowledge gained
into a usable policy. The goal is to train a robust controller (e.g., a neural network) that can
reliably reach the high-reward states identified in Phase 1, crucially without relying on the state-
resetting capability. This is typically accomplished by leveraging the best trajectories stored in
the archive as demonstrations, training the policy via techniques such as Imitation Learning
(like Behavioral Cloning) or using the trajectories to initialize or guide standard Reinforcement
Learning algorithms, ultimately producing a policy intended for standard environment interaction.

– Strengths and Limitations: Go-Explore’s primary strength lies in its proven ability to conquer
previously intractable hard-exploration benchmarks by systematically searching the state space
and avoiding forgetting how to reach rare but valuable states. Its focus on novel state discov-
ery via cell representations is key to this success. However, the method faces significant practical
challenges. Its heavy dependence on simulator state-resetting capabilities limits its applicabil-
ity outside of controlled simulation environments. Furthermore, the overall performance is highly
sensitive to the quality and design of the cell representation, and the robustification phase
itself can be difficult, as translating a specific, high-performing trajectory from the archive into a
generally reliable policy remains a non-trivial learning problem.

3


