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Imitation Learning

* in RL, defining a clear and effective reward function is often complex and non-trivial. This complexity
is particularly evident in robotics applications, where specifying a reward that accurately reflects desired
behaviors can be challenging.

* Such scenarios often necessitate extensive reward engineering, a process that involves designing reward
functions to guide the agent's learning process effectively. This aspect can constitute a significant portion
of the overall effort in developing RL systems.

* IL enables agents to acquire effective policies by observing expert demonstrations, effectively bypass-
ing the need for explicit reward functions. However, designing a suitable reward function remains a
significant challenge.

* While IL allows agents to replicate expert behavior, integrating reward shaping can enable agents to
surpass the expert's performance. This advancement is achieved by learning the reward function from
demonstrations, facilitating the discovery of more optimal policies beyond mere imitation.
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the objective is to learn a policy 7y that closely approximates the expert policy 7* . The setup involves
observing expert demonstrations and using them to guide the learning process. The goal is to minimize
the discrepancy between the learned policy and the expert’s policy, thereby enabling the agent to perform
tasks effectively without explicit reward signals.

* A key point is that we aim to perform this learning in the state space of the learned policy 7.
However, the data available comes from the expert policy 7, which means we must modify the setup
slightly to accommodate this discrepancy.

Samples are collected from the expert policy 7%, so IL is not a form of SL.
We have a simulator available, so IL is not offline RL.

* IL encompasses two primary methodologies:

— Direct Approach (Behavioral Cloning): This method involves supervised training to directly
map states to actions by learning from expert demonstrations. It is akin to SL, where the model
learns to predict the actions taken by the expert in corresponding states.

— Inverse RL (IRL): In contrast, IRL focuses on inferring the underlying reward function that the
expert is presumed to be optimizing. Once the reward function is learned, RL techniques are
employed to derive the optimal policy that maximizes this inferred reward function.

* The general setup for Behavioral Cloning:
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* In the behavioral cloning setup, the following inequality shows that the data distribution and the learned
policy distribution may not match:
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This mismatch causes the model to encounter Out Of Distribution data, making the setup fail.

* The first solution is to align the distributions of the learned policy 7y and the expert policy 7*. This can
be done by adjusting the learning process so that the state distribution of the learned policy matches
the expert’s distribution. The goal is:
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This approach ensures that the agent learns a policy that behaves similarly to the expert policy by
focusing on the same state distribution.

* This alignment is challenging due to several reasons:

— Humans do not behave in a Markovian manner, as their decisions are influenced by past experi-
ences and reasoning. In contrast, expert policies are Markovian, relying solely on the current state
for decision-making.

Solution: consider a sequence of states for 7y, using models like LSTM, RNN, or Transformer.
This approach is why BC involves complex networks, as these models capture temporal dependen-
cies between states.

— In Gaussian Mixture Models (GMMs), when applying MLE to estimate the mean parameter to
estimated mean ends up at the center of the data, the resulting model may exhibit mean-seeking
behavior.

Solution: discretizing the actions and use cross-entropy loss. However, this requires the action
space dimensionality to be low. If the action space is high, we can apply the chain rule to handle
the complexity.

* Despite various approaches, IL may still fail to capture human-like behavior due to the complexity of
human decision-making. In such cases, we aim to align the data distribution with the learned policy 7y,
ie.,

P(data) =~ my(s)

This alignment ensures that the agent's behavior closely matches the observed data distribution, ad-
dressing the limitations of previous methods.

* In Dataset Aggregation (DAgger), the expert re-labels the states encountered by the current policy.
This process involves collecting a set of sample trajectories and having the expert provide the correct
labels for the states where the policy exhibits weaknesses. By iteratively adding these corrected labels to
the dataset, the agent gradually encounters the state distributions it will experience during deployment,
thereby mitigating the distributional shift problem.
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Supervised learning
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