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Inverse Reinforcement Learning

• Modeling human behavior using optimal control assumes access to optimal trajectories and a well-defined
cost function. However, in practice, human actions are often suboptimal and the true objective is hard
to specify, limiting the applicability of this approach.

• RL vs. IRL: In RL, the reward function is known and denoted as rψ(s, a), and the objective is to learn
the optimal policy π∗. In contrast, IRL assumes access to samples from π∗ and aims to recover the
underlying reward function rψ(s, a) that explains the observed behavior.

• In heuristic IRL algorithms, it is commonly assumed that the reward function is a linear combination of
features. This linearity facilitates generalization and simplifies the learning process.

rψ(s, a) = ψ⊤ϕ(s, a)

• Feature Matching IRL: As a first step in feature-based IRL, we select the parameter vector ψ such
that the expected feature counts under the learned policy πrψ match those under the expert policy π∗:

Eπrψ [f(s, a)] = Eπ∗ [f(s, a)]

This principle serves as the foundation for algorithms like Apprenticeship Learning, where the goal is to
find a reward function for which the optimal policy replicates expert behavior in terms of feature usage.

• To address the under-specification problem in IRL, one can adopt the maximum margin principle. The
idea is to find a reward parameter ψ and margin m such that the expert policy is not only optimal but
also yields a significantly higher expected reward than any alternative policy. This can be formulated
as:

max
ψ,m

m s. t. ψ⊤Eπ∗ [ϕ(s, a)] ≥ max
π∈Π

ψ⊤Eπ[ϕ(s, a)] +m

This constraint ensures that the reward function distinguishes the expert policy from suboptimal ones
by a margin m, enhancing the robustness of reward inference.

• To avoid hard constraints in maximum margin IRL, we reformulate the optimization using a divergence-
based regularization:

min
ψ

1

2
∥ψ∥2 s. t. ψ⊤Eπ∗ [ϕ(s, a)] ≥ max

π∈Π

(
ψ⊤Eπ[ϕ(s, a)] +D(π, π∗)

)
This formulation ensures that the expert policy π∗ achieves higher expected reward than any other policy
by a margin proportional to their divergence D(π, π∗). Typical choices for D include KL-divergence.

• The constraint can be absorbed into the objective using Lagrangian relaxation, yielding an unconstrained
problem:

L(ψ, λ) = 1

2
∥ψ∥2 + λ

(
max
π∈Π

[
ψ⊤Eπ[ϕ(s, a)] +D(π, π∗)

]
− ψ⊤Eπ∗ [ϕ(s, a)]

)
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This approach enables gradient-based optimization while still favoring reward functions that distinguish
expert behavior.

• Regularized IRL Still DOESN’T WORK: Even with divergence penalties and Lagrangian relaxation,
the method requires solving hard constrained optimizations and estimating policy maxima, which remains
intractable. This approach named Apprenticeship Learning.

• Generative models in RL can produce plausible trajectories but lack a sense of optimality. To address
this, we introduce an auxiliary variable representing the optimal value, guiding the model to generate
trajectories aligned with optimal actions. This approach enhances the learning of reward functions from
high-quality expert data.

this optimality is local or per-step, not global over trajectories.

•

p(τ | O1:T ) =
p(τ,O1:T )

p(O1:T )
∝ p(τ)

∏
t

exp(r(st, at)) = p(τ) exp

(∑
t

r(st, at)

)

This means that the higher the sum of rewards along a trajectory, the exponentially more likely that
trajectory becomes.

• In IRL, we maximize the likelihood of expert trajectories by computing the following expressions:

p(τ | O1:T , ψ) ∝ exp

(∑
t

rψ(st, at)

)

Z =

∫
p(τ) exp(rψ(τ)) dτ

L(ψ) = 1

N

N∑
i=1

rψ(τi)− logZ

∇ψL =
1

N

N∑
i=1

∇ψrψ(τi)−
1

Z

∫
p(τ) exp(rψ(τ))∇ψrψ(τ) dτ

∇ψL = Eτ∼π∗(τ) [∇ψrψ(τ)]− Eτ∼p(τ |O1:T ,ψ) [∇ψrψ(τ)]

Higher-reward trajectories are exponentially more likely, and learning optimizes the reward parameters
to match the expert’s expected reward features.

2

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

