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1 Optimal-Control Interpretation of Demonstrations
Consider an infinite-horizon discounted Markov decision process (MDP)

M = ⟨S,A, P, R, γ⟩, 0 < γ < 1, (1.1)

with possibly continuous state s ∈ S and action a ∈ A. For any stationary policy π, define the value and
action-value functions

V π
R (s) = Eπ

[
∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s

]
, Qπ

R(s, a) = R(s, a) + γEs′|s,a [V
π
R (s

′)] . (1.2)

Optimal control assumes an expert demonstrator follows a policy that is optimal or near-optimal for some
unknown reward R, i.e.,

πE ∈ argmax
π

V π
R or V πE

R ≥ V π
R − δ, ∀π, (1.3)

with tolerance δ ≥ 0. Recovering such an R therefore provides both a causal explanation of observed
behaviour and, when re-optimised, a controller that generalises to novel situations.

2 Learning from Demonstrations: Three Paradigms
• Behavioural cloning treats the mapping s 7→ a as a supervised-learning problem.

• Standard reinforcement learning presupposes R is known.

• Inverse reinforcement learning (IRL) seeks R from trajectories alone and then solves the forward
RL problem.

The motivation for IRL is that a single compact reward can induce correct actions in states never visited
during demonstration, thereby avoiding covariate-shift error accumulation inherent in pure behavioural
cloning.

3 Formal Definition of the IRL Problem

3.1 Demonstrations and Feature Expectations
Let D = {τ (i)}Ni=1 be demonstrations with

τ (i) =
(
s
(i)
0 , a

(i)
0 , s

(i)
1 , a

(i)
1 , . . .

)
, Φ(τ) =

∞∑
t=0

γt ϕ(st, at), (3.1)

where the feature map ϕ : S ×A → Rk is fixed. The empirical discounted feature expectation is

µ̂E =
1

N

N∑
i=1

Φ
(
τ (i)
)
. (3.2)

A linear reward parameterisation is assumed:

Rθ(s, a) = θ⊤ϕ(s, a), θ ∈ Rk. (3.3)
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3.2 Ill-posedness Explained
1. Reward aliasing. If θ satisfies θ⊤µ̂E = 0, then every demonstrated return equals zero. Scaling θ

by any constant keeps returns identical, so infinitely many rewards remain consistent with the data.

2. Policy non-uniqueness. The map π 7→ µ(π) = Eπ [Φ(τ)] need not be injective: different policies
can induce the same feature expectation when ϕ is not state-action sufficient.

Additional optimality or regularity principles are therefore required to select a single R.

4 Feature-Matching Inverse RL

4.1 Performance Gap Lemma
Let π, π′ be any two policies and θ any parameter vector. Because Rθ is linear,∣∣V π

θ − V π′

θ

∣∣ = ∣∣∣θ⊤(µ(π)− µ(π′)
)∣∣∣ ≤ ∥θ∥∞ ∥µ(π)− µ(π′)∥1. (4.1)

Proof. Substitute (3.3) into the value definitions and apply Hölder’s inequality with conjugate norms
∥θ∥∞ and ∥ · ∥1. ■

Hence, if the learner attains ∥µ̂E−µ(π)∥1 ≤ ε, its return under any linear reward differs from the expert’s
by at most ε∥θ∥∞.

4.2 Apprenticeship-Learning Algorithm
Maintain a list {π(j)}mj=1 and associated {µ(j)}. At iteration m, solve the quadratic program:

max
θ,t

t

s.t. θ⊤
(
µ̂E − µ(j)

)
≥ t, j = 1, . . . ,m,

∥θ∥2 ≤ 1,

(4.2)

yielding a separating hyperplane of margin t. Compute π(m+1) = argmaxπ V
π
Rθ

with any forward RL
solver, append µ(m+1), and repeat until t ≤ ε.

4.3 Convergence Proof Sketch
Let D = maxj ∥µ̂E − µ(j)∥2. Each quadratic-program solution delivers a margin

tm ≥ ε

D
, (4.3)

while the Euclidean projection guarantees that after at most

m ≤ D2

ε2
k (4.4)

2

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/


Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 23 Summary
Summarized By: Arshia Gharooni

iterations, the hull of learner feature expectations intersects the ε-ball around µ̂E. Thus, the algorithm
halts in O(k/ε2) forward-RL calls.

5 Maximum-Margin Formulation
Imposing an ℓ1-norm bound ∥θ∥1 ≤ c and slack variables ξj ≥ 0 yields the primal optimisation:

min
θ,ξ

1
2
∥θ∥1 + C

∑
j

ξj s.t. θ⊤
(
µ̂E − µ(j)

)
≥ 1− ξj. (5.1)

To obtain the dual, form the Lagrangian with multipliers αj ≥ 0:

L(θ, ξ, α) = 1
2
∥θ∥1 + C

∑
j

ξj −
∑
j

αj

(
θ⊤
(
µ̂E − µ(j)

)
− 1 + ξj

)
. (5.2)

Stationarity with respect to ξj implies αj ≤ C; sub-differential calculus for the ℓ1-norm then delivers the
dual:

min
0≤αj≤C

1

2

∥∥∥∑
j

αj

(
µ̂E − µ(j)

)∥∥∥2
∞
−
∑
j

αj. (5.3)

This is identical to the dual of a structured support-vector machine trained to classify expert versus learner
feature totals.

6 Latent-Variable Model and Maximum-Entropy Distribution

6.1 Optimality Indicators
Introduce binary latent variables Ot ∈ {0, 1} with

Pr(Ot = 1 | st, at; θ) = expRθ(st, at), Rθ(st, at) ≤ 0, (6.1)

so that higher reward implies greater likelihood of optimality.

6.2 Derivation of the MaxEnt Form
The joint log-likelihood of one trajectory and its optimality indicators is

log Pr(τ, O0:T−1; θ) =
T−1∑
t=0

(
logP (st+1 | st, at)+log πE(at | st)+OtRθ(st, at)+log(1−eRθ)1−Ot

)
. (6.2)
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Maximising the expectation of this log-likelihood under the posterior of Ot with an entropy term for Ot

(i.e., an EM iteration with entropy regularisation) yields the optimal posterior:

Pr(Ot = 1 | τ ; θ) = eRθ(st,at)

1 + eRθ(st,at)
. (6.3)

Substituting back and carrying out the maximisation with respect to θ collapses the terms independent
of Rθ, leaving the unconstrained optimisation:

max
θ

∑
t

Rθ(st, at)− logZ(θ), Z(θ) =
∑
τ

exp
(∑

t

Rθ(st, at)
)
. (6.4)

The corresponding trajectory distribution is therefore

Pθ(τ) =
1

Z(θ)
exp

(∑
t

Rθ(st, at)
)
, (6.5)

which is precisely the maximum-entropy distribution subject to reproducing the expert’s expected reward.

7 Dynamic-Programming Evaluation of the Partition Function

7.1 Soft Bellman Equations
Define soft value and soft Q-functions recursively:

Qθ(s, a) = Rθ(s, a) + γEs′|s,a
[
Vθ(s

′)
]
,

Vθ(s) = log
∑
a∈A

expQθ(s, a).
(7.1)

Contraction proof. For two value functions V, V ′,

∥(T V )− (T V ′)∥∞ ≤ γ∥V − V ′∥∞, (7.2)

because the log-sum-exp is 1-Lipschitz and the expectation contracts by γ. Therefore, iterating V (k+1) =
T V (k) converges to the unique fixed point Vθ.

7.2 Connection to the Partition Function
Let s0 denote the deterministic start state. Because the probability of any path factors into transition
probabilities and the policy derived below, one may show inductively that

logZ(θ) = Vθ(s0). (7.3)

Hence, soft value iteration computes both the partition function and the optimal soft policy:
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πθ(a | s) = exp
(
Qθ(s, a)− Vθ(s)

)
. (7.4)

7.3 Gradient of the Log-Likelihood
For demonstration set D,

∇θ logPθ(D) = N
(
µ̂E − µPθ

)
, (7.5)

where µPθ
= EPθ

[Φ(τ)]. Concavity of logPθ in θ follows because its Hessian equals minus the covariance
of Φ under Pθ.

8 Sample-Based IRL with Unknown Dynamics
When P is unknown or continuous, estimate µPθ

via importance sampling. With a proposal policy π̃ and
roll-outs {τ (i)}Mi=1,

µPθ
=

M∑
i=1

wiΦ(τ
(i))

M∑
i=1

wi

, wi =
expRθ(τ

(i))∏
t π̃
(
a
(i)
t | s(i)t

) . (8.1)

Since state-transition probabilities cancel between numerator and denominator, no model of P is needed.

9 Variance-Reduction Techniques

9.1 Baseline Subtraction Minimises Variance
For any constant vector b,

Var[w(Φ− b)] = Var[wΦ]− 2b⊤Cov[w,wΦ] + b⊤Var[w]b.

Minimising over b gives b∗ = Ew[Φ]. Subtracting this baseline leaves the estimator unbiased but reduces
variance.

9.2 Effective Sample Size (ESS)
Define

NESS =
(
∑

i wi)
2∑

i w
2
i

. (9.1)

Derivation. The Cauchy–Schwarz inequality implies
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(∑
i

wi

)2

≤ M
∑
i

w2
i ,

so NESS ≤ M . Under Monte-Carlo central-limit theory, the variance of the self-normalised estimator is
approximately Var[wΦ]/ (

∑
i wi)

2, hence NESS behaves as the reciprocal of the variance inflation factor
and serves as a diagnostic of sample quality.

9.3 Adaptive Loop
Iteratively:

1. Generate roll-outs with current learner policy π̃.

2. Update θ by gradient ascent using the variance-reduced estimate.

3. Improve π̃ by any RL method treating Rθ as cost.

4. If NESS falls below a threshold, resample trajectories.

10 Guided Cost Learning (GCL)

10.1 Objective Functions
Maintain a replay buffer B containing both expert and learner trajectories. The reward network Rθ

maximises

L(θ) =
∑
τ∈D

Rθ(τ)− log
∑
τ∈B

expRθ(τ). (10.1)

which is the log-likelihood of a logistic classifier that labels trajectories as expert (positive) or non-expert
(negative).

10.2 Policy Update
The learner policy πϕ is updated by Trust-Region Policy Optimisation (TRPO) to minimise expected cost
J(ϕ) = Eπϕ

[Rθ(τ)] under a constraint DKL(πϕ∥πϕold) ≤ δ. The trust-region ensures the policy distribution
remains close enough to its predecessor so that importance weights stay well-behaved.

10.3 Convergence Intuition
At equilibrium, the classifier cannot distinguish learner from expert trajectories; hence the Jensen–Shannon
divergence between their distributions is zero and Pθ = PE. Simultaneously, because the policy optimisa-
tion reduces the learned cost, the learner actions approach optimality under the converged reward.
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