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1 The Generalisation Gap
Deep RL agents trained interactively in simulators can defeat Atari at super-human level, solve continuous-
control benchmarks, and learn visuomotor manipulation from scratch. Yet the same algorithms collapse
when they must act in the real world without fresh interaction. The empirical disconnect between on-line
success and off-line brittleness is the generalisation gap.

Figure 1: The generalisation gap

Offline Reinforcement Learning (ORL) addresses the question:

Given a fixed, finite log of past experience, can we learn a near-optimal policy
without any further environment interaction?

Practical motivation abounds: surgical robots cannot explore on patients; autonomous-driving data sets
span petabytes; large-scale robotic fleets record everything they do. Harnessing such corpora promises
“data-driven RL” — the analogue of supervised learning’s ImageNet moment.

2 What Makes Modern ML Tick — and Why RL Is Different
Supervised deep learning succeeds because

1. Massive i.i.d. data sets supply dense coverage of the input space.

2. Over-parameterised networks fit those data yet generalise due to implicit regularisation by SGD.

3. Cheap evaluation enables rapid empirical iteration.

In RL none of these pillars holds automatically. Logged trajectories are non-i.i.d., evaluation is costly,
and the learner must predict counterfactual outcomes for untried actions. we should ask whether
we can nevertheless replicate the supervised-learning recipe by training on big logged corpora for many
epochs, occasionally refreshing the buffer when circumstances permit.
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Figure 2: Data-driven RL loop

3 From On-Policy to Offline RL: Formal Foundations
Let an episodic discounted MDP be M = (S,A, P, r, γ, ρ0). Classical on-policy RL iteratively samples
new trajectories with its current policy. Off-policy RL reuses old experience but still collects more data
while learning.

3.1 Offline RL Setting
Input A static data set

D = {(si, ai, ri, s′i)}Ni=1 ∼ dβ,

where dβ is the discounted occupancy of an unknown behaviour policy β.

Goal Produce a policy

π⋄ ≈ argmax
π

J(π), J(π) = Es0∼ρ0V
π(s0)

without further interaction with P .

3.2 Distribution Shift Notation
Denote the state–action support of the data by

supp(D) = {(s, a) : (s, a) ∈ D}.

An action a taken in state s is out-of-distribution (OOD) when (s, a) /∈ supp(D).
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4 A Taxonomy of Offline-RL Data Regimes

Regime Composition of D Challenge Typical Application
Imitation-like Near-expert roll-outs Avoid performance collapse Human demos
Mixed-quality Good + bad trajectories Identify and prefer good Ego-vehicle logs
Heterogeneous-skill Fragments of high reward “Stitch” sub-trajectories Robot fleets

5 Intuitions, Micro- & Macro-Scale Stitching, and Case-Studies

5.1 From Imitation to Stitching
A bad intuition views ORL as sophisticated imitation learning. A better view is dynamic-programming-
based recombination: propagate sparse rewards backward, connect partial successes, and synthesise
new behaviour not literally present in any single trajectory.

5.2 COG: A Vivid Example
In COG a robot that learned to open either a drawer or a door can, offline, infer a composite strategy to
move an obstructing block, open the drawer, retrieve the key, unlock the door, and exit.

5.3 QT-Opt Grasping
A replay buffer of 580 k previously recorded grasp episodes suffices for an 87 % success rate; a mere
28 k on-line finetuning episodes then lifts performance to 96 %.
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6 Why Offline RL Is Hard

6.1 Counterfactual Queries
The agent must evaluate

Qπ(s, a) for (s, a) /∈ supp(D).

Since the reward for such pairs is never observed, value estimates rely purely on function-approximation
extrapolation, which may be arbitrarily wrong.

6.2 Bootstrapping Error Amplification
Define the Bellman operator

(T Q)(s, a) = r(s, a) + γmax
a′

Q(s′, a′).

Ordinary DQN minimises ∥Qθ − T Qθ̄∥2. Let ε(s, a) be the extrapolation error whenever a′ is OOD. If
|ε| ≤ δ on one step, repeated application yields a geometric series and an ℓ∞ bound

∥Qθ −Q⋆∥∞ ≤ γ

1− γ
δ.

Thus even tiny OOD errors blow up as γ → 1. Empirically this manifests as the massive over-estimation
curve.

7 Algorithmic Solutions
All modern techniques pursue one of two principles:

1. Keep the learned policy inside (or close to) the data manifold.

2. Change the learning rule so the critic never bootstraps on OOD actions.
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7.1 Explicit Policy-Constraint Methods
We solve

max
π

J(π) s.t. DKL

(
π(· | s) ∥ β(· | s)

)
≤ ϵ, ∀s.

7.1.1 Actor-Objective Penalty

With a Lagrange multiplier λ:

Lactor = Edβ
[
Qθ(s, a)

]
− λEs∼dβ

[
DKL(π∥β)

]
.

Gradient ascent requires only the log-prob density of Gaussian / categorical policies, hence is easy to
implement.

7.1.2 Reward Shaping

Alternatively redefine
rλ(s, a) = r(s, a)− λ log

π(a | s)
β(a | s)

.

Standard Q-learning on rλ automatically penalises future divergence.

7.2 Implicit Policy-Constraint Methods: Advantage-Weighted Regression
Start with the constrained optimisation Lagrangian

L(π, η) = J(π) + η
[
ϵ− Es∼dβDKL(π∥β)

]
.

Taking functional derivatives shows the optimum obeys

π⋆(a | s) ∝ β(a | s) exp
(

1
α
Aβ(s, a)

)
, α = 1

η
.

Hence implementation reduces to weighted behaviour cloning with weights

w(s, a) = exp
(

1
α
Aβ(s, a)

)
,

where Aβ(s, a) = Qβ(s, a)− Vβ(s). This is the Advantage-Weighted Regression (AWR) algorithm.
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7.3 Support Constraints & Bootstrapping-Error Reduction: BEAR
BEAR minimises the Maximum Mean Discrepancy (MMD) between samples from π and β:

MMD2(π, β) =
∥∥Ea∼πφ(a)− Ea∼βφ(a)

∥∥2

2
,

with φ a random-Fourier feature map. The critic is then trusted only on in-support state–action pairs;
the actor solves

max
π

EdβQθ(s, a) s.t. MMD(π, β) ≤ δ.

Empirically this yields smaller value overestimation than KL penalties while permitting more freedom than
strict cloning.

7.4 Eliminating OOD in the TD Target: Implicit Q-Learning (IQL)
IQL replaces the maxa′ in the TD target by the expectile value

Vϕ(s
′) = Expectileτ

(
Qθ(s

′, a′)
)
, τ ∈ (0.5, 1).

Training uses
LQ =

(
Qθ(s, a)− [r + γVϕ̄(s

′)]
)2
.

Because a′ ∼ β, the target never steps outside the logged action support, eliminating bootstrapping
error. A deterministic greedy-in-support policy is extracted afterwards via another advantage-weighted
regression layer.

8 Theoretical Underpinnings

8.1 Duality of KL-Constrained Control
Consider the primal

max
π

J(π) s.t. EdβDKL(π∥β) ≤ ϵ.

The Lagrangian is

max
π

min
η≥0

Edβ

[
Qβ(s, a)− η log

π(a | s)
β(a | s)

]
+ ηϵ.

Interchanging max/min and noting argmaxπ is exponential in the advantage yields the AWR weight
formula above.

8.2 Quantitative Bootstrapping Error Amplification
Let ∆0(s, a) = Qθ(s, a) − Q⋆(s, a). Assume for every in-support pair |∆0| ≤ δ and for every OOD pair
|Qθ| ≤ B. After one Bellman update the worst-case error obeys
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|∆1(s, a)| ≤ γ
(
δ + (1− κ)B

)
,

where κ = Pra∼β

(
(s, a) ∈ supp(D)

)
. Iterating shows geometric growth whenever κ < 1. This formalises

slide 13’s empirical plot.

8.3 Expectile Regression in IQL
For τ ∈ (0, 1) the expectile is the minimiser of

Lexpectile(v) = Ea∼β

∣∣τ − (1Q≤v)
∣∣ (Qθ(s, a)− v

)2
.

Choosing τ > 0.5 yields an optimistic value within the data-support envelope, sidestepping OOD arg-max.

9 COG Practical Implementations and Empirical Evidence

9.1 COG Skill Transfer
From a heterogeneous log of blocked-drawer and blocked-door interactions the agent stitches together
a five-step composite plan achieving a task never directly demonstrated. Visual traces confirm that
dynamic-programming backups propagate sparse success signals through the state graph.

9.2 QT-Opt Vision-Based Grasping
A distributed system maintains

• Live data collection threads (for on-line finetuning).

• Training buffers containing millions of high-resolution images.

• Bellman updaters that compute target Q-values.

Offline training to 87% success (over 580 k episodes) precedes a tiny on-line phase to 96%.

QT-Opt architecture
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