
Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Summary of: Lecture 26
Summarized By: Behnia Soleymani

• I. Continue From Last Summary: Game Theory

– We can group games by how the agents’ interests line up:

∗ Cooperative Games: All agents work towards a common goal and get similar rewards. Team
success is the aim.

∗ Competitive (Zero-Sum) Games: Agents have opposite goals. The total rewards always
add up to zero (ΣiRi(a) = 0). If one agent wins, another loses that exact amount.

∗ Mixed/General-Sum Games: This is the most common type. Agents have their own reward
goals, which might not be directly opposed or perfectly aligned. Many real-world situations
fit here.

– To figure out what might happen in a game, we use solution concepts:

∗ Mixed Strategy (σi): An agent doesn’t just pick one action but chooses randomly from
their actions according to a probability distribution.

∗ Mixed Strategy NE (σ∗): A set of mixed strategies σ∗ = (σ∗
1, . . . , σ

∗
N) is an NE if no

agent can get a better average reward by changing their mixed strategy, assuming others
keep playing their part of σ∗. Formally, E[Ri(σ

∗
i , σ

∗
−i)] ≥ E[Ri(σ

′
i, σ

∗
−i)] for any other mixed

strategy σ′
i.

∗ Nash’s Theorem: A famous result that says every Normal Form Game with a limited number
of players and actions has at least one Nash Equilibrium (which might involve mixed strategies).

• II. Moving to Sequential Choices: Multi-Agent Reinforcement Learning (MARL)

– MARL takes game theory ideas and uses them in situations where agents make many decisions
one after another over time, learning as they go (like in regular Reinforcement Learning). Its where
multi-agent games meet sequential decision-making.

– The main model for MARL is the Stochastic Game (SG), or Markov Game. It’s like an MDP but
for N agents:

∗ Parts:

· S: A shared set of states, describing the environment’s current situation.

· {Aj}j∈N : Each agent j has its own set of possible actions Aj. A joint action a =
(a1, . . . , aN) is one action from each agent.

· T (s′|s, a): The transition function, giving the chance of moving to state s′ from state s
if joint action ’a’ is taken.

· {Rj}j∈N : Each agent j has a reward function Rj(s, a), giving the immediate reward for
joint action ’a’ in state s.

· γ: A discount factor (between 0 and 1), making future rewards a bit less valuable than
immediate ones.

1

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

∗ Policy (Strategy) πj: For agent j, this is a plan that says what action (or distribution over
actions) to take in each state, πj : S → Ω(Aj).

∗ Value Function V j
π (s): The expected total discounted future reward for agent j, if it starts

in state s and all agents follow the joint policy π = (π1, . . . , πN).

– The idea of Nash Equilibrium also applies to Stochastic Games: a joint policy π∗ is an NE if no
agent j can get a better value V j(π∗

j , π
∗
−j)(s) by just changing its own policy to πj, for any state

s.

• III. Big Challenges in MARL

– Making good MARL agents is tough because of these issues:

∗ Non-stationarity (Changing Environment): From one agent’s viewpoint, the environment
seems to keep changing because other agents are also learning and changing their strategies.
This breaks a key assumption of many basic RL methods.

∗ Scalability (Growing Complexity): The number of possible joint actions (|A1|×· · ·×|AN |)
gets huge very quickly as you add more agents. Storing values for all joint actions becomes
impossible.

∗ Credit Assignment (Who Did What?): In team settings, especially if there’s only one
team reward, it’s hard to tell which agent’s actions helped or hurt the team’s performance.

∗ Opponent Modelling (Guessing Others): To act smart, an agent often needs to guess or
model what other agents will do or what their plans are. This is hard if opponents are also
learning.

∗ Equilibrium Selection (Which NE?): Games can have many Nash Equilibria. If agents
learn on their own and aim for different NEs, they might not coordinate well. Picking or
agreeing on a good NE is tricky.

• IV. Common MARL Algorithms

– Independent Q-Learning (IQL):

∗ How it works: The simplest idea. Each agent runs its own Q-learning, learning a Q-value
Qi(s, ai) based only on its own actions and rewards. It basically ignores that other agents are
learning.

∗ Update: Qi(s, ai)← Qi(s, ai) + α(ri + γmaxa′i Q
i(s′, a′i)−Qi(s, ai)).

∗ Good: Easy to set up. Bad: Faces the non-stationarity problem and often doesn’t work well
or converge reliably.

– Opponent Modelling: Fictitious Play

∗ How it works: A basic way to model opponents. An agent assumes opponents are playing a
fixed (but possibly random) strategy.

2

∗ Method: Agent i keeps track of how often opponent j has played action aj in state s. Based
on these counts, it estimates opponent j’s strategy Prit(a

j|s). Agent i then plays its best
response to these estimated strategies.

– Joint Action Learners (JALs): These algorithms learn Q-values that depend on the actions of
all agents, Q(s, a1, . . . , aN).

∗ Joint Q-Learning (JQL):

· Use Case: Good for games where all agents get the same reward R(s, a) and teams are
small. The goal is usually a “Pareto-dominating” NE (an NE that’s at least as good for
everyone and strictly better for someone, compared to other NEs), which is unique in
these games.

· Q-value: Agents learn a shared Q-function Q(s, a).

· Update: Q(s, a)← Q(s, a) + α(r + γmaxa′i Q(s′, a′i, â′−i)−Q(s, a)).

· â′−i are the guessed actions of other agents in the next state s′. Agent i needs an opponent
model (like fictitious play) to make these guesses.

· Convergence: JQL can find the true Nash Q-values in cooperative games if all agents use
JQL (called “self-play”), explore enough, and the learning rate α is managed well (e.g.,
Σαn →∞,Σ(αn)

2 <∞).

∗ Minimax Q-Learning - For Competitive (Zero-Sum) SGs:

· Use Case: Good for two-player zero-sum games (or one agent vs. a team trying to
minimize its reward). Aims for a min-max equilibrium, where the expected utilities are
unique.

· Q-value: Agent j learns Qj(s, aj, a−j), its value if it takes action aj and opponents take
a−j.

· Value of next state for agent j (V j(s′)): Agent j calculates this assuming it will pick
its action to maximize its Q-value, while opponents will pick their actions to minimize
agent j’s Q-value: V j(s′) = maxa′j mina′−j

Qj(s′, a′j, a′−j).

· Update: Qj(s, aj, a−j)← (1− α)Qj(s, aj, a−j) + α(rj + γV j(s′)).

· Convergence: Can find the min-max Q-values in self-play with enough exploration and
good learning rates. Fictitious play can also be used here; for zero-sum games in self-play,
it helps converge to the min-max action.

∗ General-Sum Stochastic Games: When rewards are not purely cooperative or zero-sum,
the problem is much harder. There can be many different Nash Equilibria. This is a big
research area in MARL.

• V. Key Things Needed for Convergence (for basic JQL & Minimax-Q):

3

– For these early MARL algorithms to reliably find their target equilibria, a few things are usually
needed:

∗ Self-play: All agents in the game are using the same learning algorithm.

∗ Lots of Exploration: Every state (or important state-action combination) must be tried out
many, many times so the agents learn about all possibilities (e.g., using ϵ-greedy or Boltzmann
exploration).

∗ Smart Learning Rate (α): The learning rate α should get smaller over time, but not too
fast (e.g., αt = 1/t, or conditions like Σαt =∞,Σ(αt)

2 <∞).

∗ Right Game Type:

· JQL works for cooperative SGs to find the unique Pareto-dominating Nash Q-values.

· Minimax-Q works for competitive (zero-sum) SGs to find the unique min-max equilibrium
Q-values.

4

