
Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 27 Summary
Summarized By: Benyamin Naderi

1 Meta-Learning and Transfer Learning
Knowledge Sharing in Sparse-Reward Environments : In games like Montezuma’s Revenge, sparse
rewards mean the agent lacks guidance from the environment. However, leveraging prior knowledge—like
needing to get a key—can drastically improve performance. Curiosity-driven exploration is useful but
resource-intensive. Understanding task structure significantly helps.

How is Knowledge Stored?

• Q-function: Indicates good actions or states; can be reused or fine-tuned.

• Policy: Guides decisions. Some actions are always irrelevant.

• Models: Capture environment dynamics (e.g., physics).

• Features/hidden states: Provide useful internal representations.

What is Transfer Learning?
Transfer learning means leveraging knowledge from previous tasks to learn faster or perform better on a
new task.

• In RL, each task is modeled as an MDP (Markov Decision Process).

• Source domain: Where the original task is learned.

• Target domain: Where the new task is applied.

Types of Transfer

1. Forward Transfer

• Train on a source task, then apply to the target.

• Works best when tasks are similar.

2. Multi-task Transfer

• Train on multiple tasks jointly.

• Representations are shared across all tasks.

3. Meta-learning

• Learn how to quickly learn new tasks.

• Assumes adaptation will happen during testing.

Transfer Performance by “Shot”
• 0-shot: No retraining; apply the source policy as-is.

• 1-shot: One trial in the target domain is allowed.

• Few-shot: Limited target trials before evaluation.
1

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 27 Summary
Summarized By: Benyamin Naderi

2 Challenges in Transfer Learning
When applying transfer learning in reinforcement learning, several key challenges may arise:

• Domain Shift: Representations learned in the source domain might not work well in the target
domain due to differences in state distributions or dynamics.

• Difference in the MDP: Some actions or transitions possible in the source domain may not be
feasible in the target domain, requiring policy adaptation.

• Finetuning Issues: When pretraining and then finetuning, the finetuning process may still need
exploration, but the optimal policy during finetuning could become deterministic, limiting learning.

Approaches to Address Challenges
• Domain Adaptation: Techniques like adversarial training or representation matching can help

align source and target domains.

• Policy Regularization: Constraining the policy during finetuning to prevent drastic deviations from
the source policy.

• Curriculum Learning: Gradually increasing task difficulty to bridge the gap between source and
target domains.

Domain Adaptation Approaches
Domain adaptation techniques aim to align the source and target domains by learning domain-invariant
representations. A common approach in computer vision involves adversarial training:

• Adversarial Domain Adaptation:

– Train a feature extractor to produce domain-invariant features

– Simultaneously train a domain classifier Dϕ(z) to predict the domain from features z

– Use gradient reversal to make the features confusing to the domain classifier

• Invariance Assumption: The key assumption is that domain differences are irrelevant to the task.
Formally:

– While p(x) differs between domains

– There exists some representation z = f(x) where:

∗ p(y|z) = p(y|x) (task-relevant information preserved)

∗ p(z) is the same across domains (domain-invariant)

Domain Adaptation in RL for Dynamics
In reinforcement learning, transferring a policy trained in a simulator to the real world is challenging due
to differences in **dynamics**. Even if the observation space remains similar (i.e., invariant features are
preserved), the policy may fail if the underlying environment behaves differently.

2

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 27 Summary
Summarized By: Benyamin Naderi

• In the real world, dynamics like obstacles or friction cause the agent to behave differently.

• In a simulator, simplified dynamics may lead to misleading trajectories and rewards.

• To bridge this gap, a learned reward offset ∆r(s, a) can be added, resulting in a corrected reward:

r̃(s, a) = r(s, a) + ∆r(s, a)

• This offset is estimated using a classifier that distinguishes real vs. simulated transitions.

However, this method is not foolproof. It may fail when:

• The simulator’s assumptions are too far from reality (e.g., dynamics that can’t be compensated
for).

• The agent learns policies that exploit simulator-specific shortcuts not present in the real environment.

To adapt from simulation to real-world dynamics, we adjust the reward using a learned offset:

r̃(st, at) = r(st, at) + ∆r(st, at) (1)

The reward offset ∆r(st, at, st+1) can be estimated in two ways:

∆r(st, at, st+1) = log ptarget(st+1 | st, at)− log psource(st+1 | st, at) (2)

Alternatively, using a domain classifier:

∆r(st, at, st+1) = log p(target | st, at, st+1)− log p(target | st, at)
− log p(source | st, at, st+1) + log p(source | st, at) (3)

What if We Can Also Finetune?
1. RL tasks are generally much less diverse

• Learned features tend to be less general.

• Policies and value functions often become overly specialized, limiting their transferability.

2. Optimal policies in fully observed MDPs are deterministic

• Loss of exploration occurs as training converges.

• Low-entropy policies adapt very slowly to new environments or tasks.

3

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 27 Summary
Summarized By: Benyamin Naderi

How to Maximize Forward Transfer?
• Basic intuition: The more varied the training domain is, the more likely the learned policy is to

generalize in a zero-shot setting to a slightly different domain.

• Randomization: Applying randomness in:

– Dynamics

– Appearance

– Environmental parameters

is widely used in simulation-to-real transfer, especially in robotics.

4

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

