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Multi-Task Reinforcement Learning
Multi-task RL can be formulated as single-task RL in a joint MDP framework:
e Approach:
— Randomly sample an MDP at the start of each episode
— Begin from the initial state distribution p(s)

— Execute policy m(ag|so) across all tasks
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The policy learns to handle multiple tasks by treating them as different initial state distributions
within a unified MDP.

Contextual Policies
* Standard Policy:
mo(als)
* Contextual Policy:
mo(als, w)
where w represents task context (e.g., "do dishes" vs. "laundry")

* Formal Representation:

— Augmented state space:

— Example contexts (w):
s Stack location in robotic manipulation
% Walking direction for navigation

x Target position for hockey puck hitting

Goal-Conditioned Policies
* Policy Definition:
T ((IlS, g)

* Reward Specifications:
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— Exact goal achievement:
r(s,a,9) = 0(s = g)

— Approximate goal region (e-tolerance):

r(s,a,9) = o(lls — gll <)

* Advantages:
— Eliminates manual reward engineering for each task
— Enables zero-shot transfer to novel goals

e Challenges:
— Training difficulties in practice

— Limited to goal-reaching tasks

A comparison on Learning paradigm

» Standard Learning;:
0" = arg min L£(6,D")

Meta-Learning:
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Standard RL:
0" = arg meaxEﬂg [R(T)]

Meta-RL:

0" = arg mgLX Z Eﬂfe(Mi) (R(7)]
i=1 ——

i

* Sum over tasks appears in the outer optimization loop

Task-specific parameters (¢;) are generated on-demand via fjy

(Single task, single dataset)

(Learn adaptation procedure)

(Single MDP)

(Learn MDP adaptation)

Meta methods optimize adaptation capability (fy) rather than direct solutions
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Meta-Reinforcement Learning

* Objective:
0" = arg max Zl Er,, () [R(T)]

where ¢; = fy(M;) (task-specific policy parameters)

* Assumption:
M; ~ p(M)

(Tasks drawn from some distribution)
* Meta-Testing:
— Sample new MDP Mg ~ p(M)
— Adapt policy: drest = fo(Miest)
* Example (Velocity Adaptation):

Contextual Policies & Meta-Learning

* Meta-Learning Objective:

0* = arg max Z Er,, (n)[R(T)]

=1

where ¢; = fy(M,) learns task-specific parameters

* Contextual Policy:

7T9(a/t|8t7 $1,Q1, 715+, St—1, Qt—1, Tt—l)
— Infers latent context (z; or ¢;) from interaction history

— Key difference: Meta-RL infers context, multi-task RL receives it
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Equivalence:
— ¢; (task parameters) =~ z; (latent context)

— Both capture task essence

Meta-learning’'s fy automates what multi-task RL manually specifies

Contextual policies generalize across tasks via history conditioning

Practical implementations often use RNNs/LSTMs to encode history

Meta-RL with Recurrent Policies
* Objective:
0" = arg max Z Er,, () [R(T)]

i=1
where ¢; = fy(M,;) encodes task-specific adaptation

— RNN processes trajectory history:

Ty = (Slaalarh ceey St)

— Hidden state h; captures task information M;
— Policy becomes 7y, (a|s) = my(als, hy)
e Implementation Challenges:
— How to design fy(M;):
1. Learn from experience {(sg, ax, Skt1,7%) ey

2. Control exploration during adaptation (unique to RL)

RNN hidden meta-learned

9* weights
r ﬁ a state \ l

as before, ¢; = |h;, 0,
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* Architecture
- ¢; = [hi, 0] combines:
% RNN hidden state h; (task memory)
s Meta-learned weights 6, (shared base policy)

— Action sampling: a; ~ mg(ay|ss, hy)
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RNN Policy Implementation
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* Directly train a recurrent policy 7y, (a|s) that maintains memory across episodes

* Hidden state persists between episodes to retain task information

e crucially , RNN hidden state is not reset between episodes.

Meta-RL as Optimization
e Optimization

0" = arg max 21 Er,. () [R(7)]

where ¢; = fy(M,;) is the adaptation rule

* When fy is RL Itself:
fg( ) =0+ aVyJ; ((9)

— Requires policy rollouts in M, to estimate V,E[R(7)]
— Adaptation data: {(sg, ar, Ske1,7k) Hy

* Connection to MAML.:
— Outer loop: Meta-objective over tasks

— Inner loop: Policy gradient updates

OFt < 0% + aV,J(0F)

Standard RL Meta-RL
0" = argmaxg E[R(7)] | 6* = argmaxg ), E[R(7;)]
Single task optimization | Bi-level optimization
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