Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary

Summarized By: Benyamin Naderi

Multi-Task Reinforcement Learning

Multi-task RL can be formulated as single-task RL in a joint MDP framework:

- · Approach:
 - Randomly sample an MDP at the start of each episode
 - Begin from the initial state distribution $p(s_0)$
 - Execute policy $\pi(a_0|s_0)$ across all tasks

The policy learns to handle multiple tasks by treating them as different initial state distributions within a unified MDP.

Contextual Policies

• Standard Policy:

$$\pi_0(\mathbf{a}|\mathbf{s})$$

Contextual Policy:

$$\pi_0(\mathbf{a}|\mathbf{s},\omega)$$

where ω represents task context (e.g., "do dishes" vs. "laundry")

- Formal Representation:
 - Augmented state space:

$$\hat{\mathbf{s}} = \begin{bmatrix} \mathbf{s} \\ \omega \end{bmatrix}, \quad \hat{\mathcal{S}} = \mathcal{S} \times \Omega$$

- Example contexts (ω):
 - * Stack location in robotic manipulation
 - * Walking direction for navigation
 - * Target position for hockey puck hitting

Goal-Conditioned Policies

Policy Definition:

$$\pi_{\theta}(a|s,g)$$

• Reward Specifications:

Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary

Summarized By: Benyamin Naderi

- Exact goal achievement:

$$r(s, a, g) = \delta(s = g)$$

- Approximate goal region (ε -tolerance):

$$r(s, a, g) = \delta(||s - g|| \le \varepsilon)$$

- Advantages:
 - Eliminates manual reward engineering for each task
 - Enables zero-shot transfer to novel goals
- Challenges:
 - Training difficulties in practice
 - Limited to goal-reaching tasks

A comparison on Learning paradigm

• Standard Learning:

$$\theta^* = \arg\min_{\theta} \mathcal{L}(\theta, D^{tr})$$

(Single task, single dataset)

Meta-Learning:

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^n \mathcal{L}(\underbrace{f_{\theta}(D_i^{tr})}_{\phi_i}, D_i^{ts})$$

(Learn adaptation procedure)

Standard RL:

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{\pi_{\theta}}[R(\tau)]$$

(Single MDP)

Meta-RL:

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n \mathbb{E}_{\pi_{\underbrace{f_{\theta}(\mathcal{M}_i)}_{\phi_i}}[R(\tau)]}$$

(Learn MDP adaptation)

- Meta methods optimize adaptation capability $(f_{ heta})$ rather than direct solutions
- Sum over tasks appears in the outer optimization loop
- Task-specific parameters (ϕ_i) are generated on-demand via f_{θ}

Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary

Summarized By: Benyamin Naderi

Meta-Reinforcement Learning

• Objective:

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n \mathbb{E}_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$ (task-specific policy parameters)

• Assumption:

$$\mathcal{M}_i \sim p(\mathcal{M})$$

(Tasks drawn from some distribution)

- Meta-Testing:
 - Sample new MDP $\mathcal{M}_{\mathsf{test}} \sim p(\mathcal{M})$
 - Adapt policy: $\phi_{\mathsf{test}} = f_{\theta}(\mathcal{M}_{\mathsf{test}})$
- Example (Velocity Adaptation):

Contextual Policies & Meta-Learning

Meta-Learning Objective:

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n \mathbb{E}_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$ learns task-specific parameters

• Contextual Policy:

$$\pi_{\theta}(a_t|s_t,s_1,a_1,r_1,\ldots,s_{t-1},a_{t-1},r_{t-1})$$

- Infers latent context $(z_t \text{ or } \phi_i)$ from interaction history
- Key difference: Meta-RL infers context, multi-task RL receives it

Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary

Summarized By: Benyamin Naderi

• Equivalence:

- ϕ_i (task parameters) $\approx z_t$ (latent context)
- Both capture task essence
- Meta-learning's f_{θ} automates what multi-task RL manually specifies
- · Contextual policies generalize across tasks via history conditioning
- Practical implementations often use RNNs/LSTMs to encode history

Meta-RL with Recurrent Policies

· Objective:

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n \mathbb{E}_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$ encodes task-specific adaptation

- RNN processes trajectory history:

$$\tau_t = (s_1, a_1, r_1, ..., s_t)$$

- Hidden state h_t captures task information \mathcal{M}_i
- Policy becomes $\pi_{\phi_i}(a|s) = \pi_{\theta}(a|s,h_t)$

• Implementation Challenges:

- How to design $f_{\theta}(\mathcal{M}_i)$:
 - 1. Learn from experience $\{(s_k, a_k, s_{k+1}, r_k)\}_{k=1}^T$
 - 2. Control exploration during adaptation (unique to RL)

Architecture

- $\phi_i = [h_i, \theta_{\pi}]$ combines:
 - * RNN hidden state h_i (task memory)
 - * Meta-learned weights θ_{π} (shared base policy)
- Action sampling: $a_t \sim \pi_{\theta}(a_t|s_t,h_t)$

Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary

Summarized By: Benyamin Naderi

Input	Process	Output
$\overline{(s_t, a_t, r_t, s_{t+1})}$	RNN update	h_{t+1}
s_t, h_t	Policy network	a_t

RNN Policy Implementation

- Directly train a recurrent policy $\pi_{\phi_i}(a|s)$ that maintains memory across episodes
- Hidden state persists between episodes to retain task information
- crucially , RNN hidden state is not reset between episodes.

Meta-RL as Optimization

Optimization

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n \mathbb{E}_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$ is the adaptation rule

• When f_{θ} is RL Itself:

$$f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$$

- Requires policy rollouts in \mathcal{M}_i to estimate $\nabla_{\theta} \mathbb{E}[R(\tau)]$

- Adaptation data: $\{(s_k, a_k, s_{k+1}, r_k)\}_{k=1}^T$

Connection to MAML:

- Outer loop: Meta-objective over tasks

- Inner loop: Policy gradient updates

$$\theta^{k+1} \leftarrow \theta^k + \alpha \nabla_{\theta} J(\theta^k)$$

Standard RL	Meta-RL
$\theta^* = \arg\max_{\theta} \mathbb{E}[R(\tau)]$	$\theta^* = \arg \max_{\theta} \sum_{i} \mathbb{E}[R(\tau_i)]$
Single task optimization	Bi-level optimization

Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary

Summarized By: Benyamin Naderi

