
Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary
Summarized By: Benyamin Naderi

Multi-Task Reinforcement Learning
Multi-task RL can be formulated as single-task RL in a joint MDP framework:

• Approach:

– Randomly sample an MDP at the start of each episode

– Begin from the initial state distribution p(s0)

– Execute policy π(a0|s0) across all tasks

The policy learns to handle multiple tasks by treating them as different initial state distributions
within a unified MDP.

Contextual Policies
• Standard Policy:

π0(a|s)

• Contextual Policy:
π0(a|s, ω)

where ω represents task context (e.g., "do dishes" vs. "laundry")

• Formal Representation:

– Augmented state space:

ŝ =

[
s
ω

]
, Ŝ = S × Ω

– Example contexts (ω):

∗ Stack location in robotic manipulation

∗ Walking direction for navigation

∗ Target position for hockey puck hitting

Goal-Conditioned Policies
• Policy Definition:

πθ(a|s, g)

• Reward Specifications:
1

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary
Summarized By: Benyamin Naderi

– Exact goal achievement:
r(s, a, g) = δ(s = g)

– Approximate goal region (ε-tolerance):

r(s, a, g) = δ(∥s− g∥ ≤ ε)

• Advantages:

– Eliminates manual reward engineering for each task

– Enables zero-shot transfer to novel goals

• Challenges:

– Training difficulties in practice

– Limited to goal-reaching tasks

A comparison on Learning paradigm

• Standard Learning:
θ∗ = argmin

θ
L(θ,Dtr)

(Single task, single dataset)

• Meta-Learning:

θ∗ = argmin
θ

n∑
i=1

L(fθ(Dtr
i)︸ ︷︷ ︸

ϕi

, Dts
i)

(Learn adaptation procedure)

• Standard RL:
θ∗ = argmax

θ
Eπθ

[R(τ)]

(Single MDP)

• Meta-RL:
θ∗ = argmax

θ

n∑
i=1

Eπfθ(Mi)︸ ︷︷ ︸
ϕi

[R(τ)]

(Learn MDP adaptation)

• Meta methods optimize adaptation capability (fθ) rather than direct solutions

• Sum over tasks appears in the outer optimization loop

• Task-specific parameters (ϕi) are generated on-demand via fθ

2

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary
Summarized By: Benyamin Naderi

Meta-Reinforcement Learning
• Objective:

θ∗ = argmax
θ

n∑
i=1

Eπϕi
(τ)[R(τ)]

where ϕi = fθ(Mi) (task-specific policy parameters)

• Assumption:
Mi ∼ p(M)

(Tasks drawn from some distribution)

• Meta-Testing:

– Sample new MDP Mtest ∼ p(M)

– Adapt policy: ϕtest = fθ(Mtest)

• Example (Velocity Adaptation):

Contextual Policies & Meta-Learning
• Meta-Learning Objective:

θ∗ = argmax
θ

n∑
i=1

Eπϕi
(τ)[R(τ)]

where ϕi = fθ(Mi) learns task-specific parameters

• Contextual Policy:
πθ(at|st, s1, a1, r1, . . . , st−1, at−1, rt−1)

– Infers latent context (zt or ϕi) from interaction history

– Key difference: Meta-RL infers context, multi-task RL receives it
3

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary
Summarized By: Benyamin Naderi

• Equivalence:

– ϕi (task parameters) ≈ zt (latent context)

– Both capture task essence

• Meta-learning’s fθ automates what multi-task RL manually specifies

• Contextual policies generalize across tasks via history conditioning

• Practical implementations often use RNNs/LSTMs to encode history

Meta-RL with Recurrent Policies
• Objective:

θ∗ = argmax
θ

n∑
i=1

Eπϕi
(τ)[R(τ)]

where ϕi = fθ(Mi) encodes task-specific adaptation

– RNN processes trajectory history:

τt = (s1, a1, r1, ..., st)

– Hidden state ht captures task information Mi

– Policy becomes πϕi
(a|s) = πθ(a|s, ht)

• Implementation Challenges:

– How to design fθ(Mi):

1. Learn from experience {(sk, ak, sk+1, rk)}Tk=1

2. Control exploration during adaptation (unique to RL)

• Architecture

– ϕi = [hi, θπ] combines:

∗ RNN hidden state hi (task memory)

∗ Meta-learned weights θπ (shared base policy)

– Action sampling: at ∼ πθ(at|st, ht)

4

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary
Summarized By: Benyamin Naderi

Input Process Output
(st, at, rt, st+1) RNN update ht+1

st, ht Policy network at

RNN Policy Implementation

• Directly train a recurrent policy πϕi
(a|s) that maintains memory across episodes

• Hidden state persists between episodes to retain task information

• crucially , RNN hidden state is not reset between episodes.

Meta-RL as Optimization
• Optimization

θ∗ = argmax
θ

n∑
i=1

Eπϕi
(τ)[R(τ)]

where ϕi = fθ(Mi) is the adaptation rule

• When fθ is RL Itself:
fθ(Mi) = θ + α∇θJi(θ)

– Requires policy rollouts in Mi to estimate ∇θE[R(τ)]

– Adaptation data: {(sk, ak, sk+1, rk)}Tk=1

• Connection to MAML:

– Outer loop: Meta-objective over tasks

– Inner loop: Policy gradient updates

θk+1 ← θk + α∇θJ(θ
k)

Standard RL Meta-RL
θ∗ = argmaxθ E[R(τ)] θ∗ = argmaxθ

∑
i E[R(τi)]

Single task optimization Bi-level optimization

5

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Lecture 28 Summary
Summarized By: Benyamin Naderi

6

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

