
Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 5: Function Approximation &
Policy Gradient methods

Summarized By: Benyamin Naderi
• Off-policy Learning is a method in which the policy used to generate behavior, by sampling trajectories

(St,At,Rt,St+1), differs from the policy being evaluated and improved. This separation enables the agent
to learn from experiences produced by a different policy, known as the behavior policy, which samples
trajectories from the environment. These experiences can include past interactions or exploratory actions,
allowing the agent to improve its target policy without being constrained by the behavior policy.

• In contrast, On-policy Learning is where the agent learns and improves the same policy that it uses
to interact with the environment.

• Recall Bellman’s optimality equation where we wanted to sample the expected :

Q∗(s, a) = E
[
r + γmax

a′
Q∗(s′, a′) | s, a

]
we can estimate this expectation by any behavior policy that samples trajectories containing sate-action
pair St,At. this way we can meet an Off-policy method for value based methods.

• Q-Learning is a value-based reinforcement learning (RL) method that iteratively updates Q-values to
seek the optimal policy. To understand this algorithm, consider sampling (St,At,Rt,St+1) trajectories,
which allows us to estimate the expected value in Bellman’s optimality equation. By iterating through
these samples, we can obtain an unbiased estimate of the return. Pay attention to the Q-learning update
rule, which iteratively converges to the average return in each step (Q-value) based on these sampled
trajectories:

qt+1(s, a) = qt(St, At) + αt

(
Rt+1 + γmax

a′
qt(St+1, a

′)− qt(St, At)
)

note that for each sate, action pair the above equation is rolls over samples for approximating, by
averaging action value functions.

• Q-learning is really sample inefficient : In the scenarios where we have a large state space, we need
a great number of samples for Q-values to be meaningful, since we are averaging over samples (enough
samples!) for Q-values.

1

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 5: Function Approximation &
Policy Gradient methods

Summarized By: Benyamin Naderi
• ϵ-greedy the importance of sampling actions by ϵ-greedy policy is that we can explore more promising

states for achieving better rewards or discovering some strategies during this process. Although running
a greedy policy leaves some promising actions undiscovered, in some sense it’s really important to let
the agent converge to the optimal policy as soon as possible and the speed of convergence important
so with a probability the agent acts random and otherwise it acts greedy to rapidly find great rewards.

a =

{
random action with probability ϵ

argmaxa Q(s, a) with probability 1− ϵ

• Function Approximation instead of storing values in a table (e.g., a Q-table), a neural network is
used to approximate the action-value function. The network takes the state as input and outputs
the estimated action-value function if actions space is continuous or inputs the action and state to
approximate it and helps to generalize over mostly identical states.

• Training Q-Network : we need the target Q-values to minimize the loss function using Stochastic
Gradient decent, there are 2 options : 1) using Monte-carlo estimation for target values which have
high variance and is not preferred, since the gradient might have a great variance and makes convergence
issues. 2) TD target which is better since it has lower variance w.r.t Monte-carlo. DQN loss functions
can be seen below:

L(θ) = E
[(

Rt+1 + γmax
a′

Q(St+1, a
′; θ−)−Q(St, At; θ)

)2]

• Note the difference between gradients in such choices of targets For SARSA, instead use a TD
target:

∆w = α
(
r + γQ̂(st+1, at+1;w)− Q̂(st, at;w)

)
∇wQ̂(st, at;w)

For Q-learning:

∆w = α
(
r + γmax

a
Q̂(st+1, a;w)− Q̂(st, at;w)

)
∇wQ̂(st, at;w)

• 2 Major problems in DQN :The Deep Q-Network (DQN) algorithm faces two major challenges
during training:

1. Non-IID Data:

– Problem: The data collected from the environment is not independent and identically dis-
tributed (non-IID) because consecutive samples are highly correlated (e.g., sequential states
in an episode).

– Solution: Experience Replay is used to break the correlation. Transitions (st, at, rt, st+1)
are stored in a replay buffer, and mini-batches are sampled randomly from this buffer for
training. This ensures that the data used for updates is more IID.

2

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 5: Function Approximation &
Policy Gradient methods

Summarized By: Benyamin Naderi
2. Non-Stationary Targets:

– Problem: The target Q-values (used to compute the TD error) are non-stationary because
the same network parameters θ are used to compute both the current Q-values and the target
Q-values. This can lead to instability during training.

– Solution: A Target Network is introduced. This is a separate network with parameters θ−

that are periodically copied from the main Q-network. The target network is used to compute
the target Q-values, providing more stable targets and improving convergence.

Summary:

– Non-IID Data: Solved by Experience Replay.

– Non-Stationary Targets: Solved by Target Network.

These two innovations were key to stabilizing and improving the performance of DQN in deep reinforce-
ment learning.

• Can treat the target as a constant scalar, but the weights will get updated on the next round, changing
the target value!

• DQN algorithm:

Algorithm 1 DQN Algorithm
1: Input C, α,D = {}. Initialize w,w− = w, t = 0
2: Get initial state s0
3: loop
4: Sample action at given ϵ-greedy policy for current Q(st, x;w)
5: Observe reward rt and next state st+1

6: Store transition (st, at, rt, st+1) in replay buffer D
7: Sample random minibatch of tuples (si, ai, ri, si+1) from D
8: for each tuple (si, ai, ri, si+1) in minibatch do
9: if episode terminated at step i+ 1 then

10: yi = ri
11: else
12: yi = ri + γmaxa′ Q̂(si+1, a

′;w−)
13: end if
14: Do gradient descent step on (yi − Q̂(si, ai;w))

2 for parameters w:

∆w = α(yi − Q̂(si, ai;w))∇wQ̂(si, ai;w)

15: end for
16: t = t+ 1
17: if mod(t, C) == 0 then
18: w− ← w
19: end if
20: end loop

3

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 5: Function Approximation &
Policy Gradient methods

Summarized By: Benyamin Naderi
• DQN vs Q-Learning : DQN improves upon traditional Q-learning by using a neural network to

approximate the Q-function, enabling it to handle high-dimensional state spaces like images. It stabilizes
training with experience replay, which breaks correlations in data, and a target value estimation that
uses fixed target for every C mini-batch and updates the Q-Network weights, which reduces instability
by providing consistent target Q-values. These innovations make DQN more scalable and stable for
complex environments.

• DQN results in Atari game make sure you can interpret these results :

• Value-Based RL: Focuses on learning value functions such as Q(s, a) to evaluate the quality of actions.
The policy is derived implicitly by selecting actions that maximize the value function.

• Policy Gradient: Instead of approximating Q-values that optimizes the policy, directly learn the optimal
policy using policy network. In this case we need transition probabilities to access the objective gradients:

• Reinforce Algorithm:

The REINFORCE algorithm is a policy gradient method that optimizes the policy directly by maximizing
the expected return. The objective is to maximize the expected reward:

J(θ) = Eτ∼πθ

[
T∑
t=0

rt

]

where τ = (s0, a0, s1, a1, . . . , sT , aT) is a trajectory sampled from the policy πθ, and rt is the reward at
time step t.

4

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 5: Function Approximation &
Policy Gradient methods

Summarized By: Benyamin Naderi
To optimize the policy, we need to compute the gradient of the objective function J(θ) with respect to
the policy parameters θ. Using the log trick, the gradient can be derived as follows:

∇θJ(θ) = ∇θEτ∼πθ

[
T∑
t=0

rt

]

Using the likelihood ratio trick, we can rewrite the gradient as:

∇θJ(θ) = Eτ∼πθ

[(
T∑
t=0

rt

)
∇θ log πθ(τ)

]

The trajectory probability πθ(τ) can be expressed as:

πθ(τ) = p(s0)
T∏
t=0

πθ(at|st)p(st+1|st, at)

Taking the log of both sides, we get:

log πθ(τ) = log p(s0) +
T∑
t=0

log πθ(at|st) + log p(st+1|st, at)

Since p(s0) and p(st+1|st, at) are not dependent on θ, their gradients are zero. Therefore, the gradient
of the log-probability of the trajectory simplifies to:

∇θ log πθ(τ) =
T∑
t=0

∇θ log πθ(at|st)

Substituting this back into the gradient expression, we get:

∇θJ(θ) = Eτ∼πθ

[(
T∑
t=0

rt

)(
T∑
t=0

∇θ log πθ(at|st)

)]

In practice, the expectation is approximated using Monte Carlo sampling. We sample N trajectories
τ (1), τ (2), . . . , τ (N) from the policy πθ, and compute the gradient as:

∇θJ(θ) ≈
1

N

N∑
i=1

[(
T∑
t=0

r
(i)
t

)(
T∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t)

)]

where r
(i)
t and a

(i)
t are the reward and action at time step t in the i-th trajectory.

5

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

