
Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 8: Advanced Methods
Summarized By: Amirhossein Asadi

Proximal Policy Optimization
• In Policy Gradient methods, it is crucial to ensure that the policy does not undergo drastic changes

during updates. Significant changes in the policy can lead to large steps in the parameter space, which
may result in a decrease in rewards. This decline in rewards can cause the generation of low-quality
training data, creating a detrimental cycle that further degrades the model’s performance.

DKL (πθ′(·|s) ∥ πθ(·|s)) =
∑
a

πθ′(a|s) log
πθ′(a|s)
πθ(a|s)

≤ ϵ.

• In general, the goal is to maximize the advantage function to ensure policy improvement. However,
this cannot be done directly because the optimal policy, which we aim to optimize, is unknown. As
a result, the data required to compute the expected value depends on the parameters θ, which are
themselves the target of our maximization process and are not available. Instead, we have data generated
from the previous policy. To address this, we use importance sampling to estimate the expected value
under the new policy using samples from the old policy.

max
πθ

Es,a∼πθ
[Aπold(s, a)] = Ea∼πold

[
πθ(a|s)
πold(a|s)

Aπold(s, a)

]
• Next, we use clipping. The benefit of clipping is that it restricts the ratio of πθ to πold, preventing

large stepwise changes in the policy parameters. However, this restriction can slow down learning. If
the situation is very poor (which is usually the case at the beginning), we use the following formula:

πθ′(a|s)
πθ(a|s)

· Aπθ(s, a),

and then switch back to the normal mode :

clip
(
πθ′(a|s)
πθ(a|s)

, 1− ϵ, 1 + ϵ

)
Aπθ(s, a)

• In general, PPO performs significantly better than TRPO and other methods in unstable and more
challenging environments. This is primarily due to its simplicity, stability, and ability to handle large
policy updates without diverging.

• TRPO often performs worse than PPO, despite their similar underlying logic. The primary reason
for this is that TRPO involves a complex optimization process. Specifically, TRPO explicitly aims to
optimize the KL divergence between the old and new policies, which requires solving a constrained
optimization problem. This process relies on several approximations and assumptions to simplify the
optimization, which can lead to suboptimal performance and instability in practice.

In contrast, PPO simplifies the optimization by using a clipped objective function, which avoids the
need for explicit KL divergence constraints. This makes PPO more computationally efficient and easier
to implement, while still maintaining stable and effective policy updates.

• Proximal Policy Optimization (PPO) is an on-policy algorithm designed to update the policy efficiently
while ensuring stability.

1

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

Deep Reinforcement Learning (Sp25)
Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 8: Advanced Methods
Summarized By: Amirhossein Asadi

Soft Actor Critic
• PPO suffers from sample inefficiency. This is because, after collecting a set of trajectories, it can only

compute a single gradient and take a small policy update step using that gradient. Once the update is
performed, the data is discarded, and new data must be collected. This repeated data collection process
is equivalent to running the simulator multiple times, which incurs high computational costs and makes
PPO sample inefficient.

J(π) =
T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))]

We observe that the return is split into two parts: one part is the traditional return we had before, and
the other part is the sum of entropies.

• To address the sample inefficiency of PPO, we need to move towards making it more off-policy. This
is where SAC comes into play.

• By using entropy, SAC ensures that the entropy is maximized for each state. In this case, the Bellman
operator is modified as follows:

T πQ(st, at) ≜ r(st, at) + γ Est+1∼p [V (st+1)]

where

V (st) = Eat∼π [Q(st, at)− log π(at|st)]

• SAC improves rewards and encourages policy diversification through entropy regularization, enhancing
robustness.

• It can be shown that in SAC, the optimal policy can be derived using the softmax function over the
Q-values. Specifically, the optimal policy π∗ is given by:

π∗(a|s) = expQ(s, a)∑
a′ expQ(s, a′)

• The SAC algorithm consists of the following key steps:

1. Q-function Update:

Q(s, a)← r(s, a) + Es′∼p, a′∼π [Q(s′, a′)− log π(a′|s′)] .

This update converges to Qπ, the Q-function under the current policy π.

2. Policy Update:
πnew = argmin

π′
DKL

(
π′(·|s)

∥∥∥∥ 1

Z
expQπold(s, ·)

)
.

In practice, only one gradient step is taken on this objective to ensure stability.

3. Interaction with the Environment: Collect more data by interacting with the environment using
the updated policy.

2

https://sharif.edu
https://t.me/RIMLLab
https://deeprlcourse.github.io/

