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MAIN BRANCHES OF MACHINE LEARNING

Supervised learning (SL) is the task of learning from labeled data. In SL, a human 
decides which data to collect and how to label it. The goal in SL is to generalize. 

Unsupervised learning (UL) is the task of learning from unlabeled data. Even though 
data no longer needs labeling, the methods used by the computer to gather data still 
need to be designed by a human. The goal in UL is to compress.

Reinforcement learning (RL) is the task of learning through trial and error. In this type 
of task, no human labels data, and no human collects or explicitly designs the 
collection of data. The goal in RL is to act.



Deep Reinforcement Learning (CS 285) by Sergey Levine [2023]



“Almost all young people 
working on Artificial 
Intelligence look around 
and say - What's popular? 
Statistical learning. So, I'll 
do that. That's exactly the 
way to kill yourself 
scientifically!”

Marvin Minsky during his course called 
Society of Mind at MIT in 2011









Introduction to RL by David Silver (DeepMind) [2015]



Reinforcement learning can be viewed as
a microcosm of the whole AI problem.

Richard S. Sutton



Reinforcement Learning (Stanford CS234) [2024]



HuggingFace DeepRL Course



How should we define

the boundary between

agent and environment?



ENVIRONMENT AND AGENT

Grokking Deep Reinforcement Learning (Miguel Morales)



https://www.youtube.com/playlist?list=PLUl4u3cNGP61E-

vNcDV0w5xpsIBYNJDkU

https://www.youtube.com/playlist?list=PLUl4u3cNGP61E-vNcDV0w5xpsIBYNJDkU
https://www.youtube.com/playlist?list=PLUl4u3cNGP61E-vNcDV0w5xpsIBYNJDkU


https://rljclub.github.io/posts/three-dogmas-of-reinforcement-learning

https://rljclub.github.io/posts/three-dogmas-of-reinforcement-learning


ENVIRONMENT AND AGENT

Deterministic Grid World Stochastic Grid World

Artificial Intelligence (CS188 Berkeley)







REWARD HYPOTHESIS

David Abel Presentation @ ICML 2023



Artificial Intelligence (CS188 Berkeley)



HuggingFace DeepRL Course



Worth Now Worth Next Step Worth In Two Steps

Artificial Intelligence (CS188 Berkeley)
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Deep Reinforcement Learning (CS 285) by Sergey Levine [2023]





HuggingFace DeepRL Course





HuggingFace DeepRL Course



Noise = 0
Discount = 1
Living reward = 0

Artificial Intelligence (CS188 Berkeley)



Noise = 0.2
Discount = 1
Living reward = 0

Artificial Intelligence (CS188 Berkeley)



Noise = 0.2
Discount = 0.9
Living reward = 0

Artificial Intelligence (CS188 Berkeley)



Noise = 0.2
Discount = 0.9
Living reward = -0.1

Artificial Intelligence (CS188 Berkeley)



WHAT WE HAVE LEARNED SO FAR?
• what is reinforcement learning and its actual place & significance

• reinforcement learning framework & basic concepts

• agent

• environment

• state/observation

• action

• reward

• policy

• model

• experience/trajectory/horizon

• discount factor

• state value function

• action value function



Challenges of

Reinforcement Learning





Offline Solution Online Learning

Artificial Intelligence (CS188 Berkeley)
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http://www.juyang.co/reinforcement-learning-ii-markov-decision-process-and-rl-agent



Levine, Sergey, et al. "Offline reinforcement learning: Tutorial, review, and perspectives on open problems." arXiv preprint arXiv:2005.01643 (2020).



http://www.juyang.co/reinforcement-learning-ii-markov-decision-process-and-rl-agent



EXPLORATION VS. EXPLOITATION DILEMMA

Artificial Intelligence (CS188 Berkeley)





CREDIT ASSIGNMENT PROBLEM



REWARD ENGINEERING PROBLEM

Deep Reinforcement Learning (CS 285) by Sergey Levine [2023]



Introduction to RL by David Silver (DeepMind) [2015]



GENERALIZATION PROBLEM

Kirk, Robert, et al. "A survey of zero-shot generalisation in deep reinforcement learning." Journal of Artificial Intelligence Research 76 (2023): 201-264.



SAMPLE EFFICIENCY PROBLEM

Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a 

stochastic actor." International conference on machine learning. PMLR, 2018.



http://www.juyang.co/reinforcement-learning-ii-markov-decision-process-and-rl-agent













WHAT WE HAVE LEARNED SO FAR?
• episodic vs continuing reinforcement learning

• offline vs online learning

• safe reinforcement learning

• on-policy vs off-policy vs offline reinforcement learning

• model-free vs model-base reinforcement learning

• exploration vs. exploitation dilemma

• credit assignment problem

• reward engineering problem

• generalization problem

• sample efficiency problem

• value-base vs policy-base vs actor-critic methods



MP, MRP, MDP



Introduction to RL by David Silver (DeepMind) [2015]



Introduction to RL by David Silver (DeepMind) [2015]



The Art of Reinforcement Learning (Michael Hu)



The Art of Reinforcement Learning (Michael Hu)



The Art of Reinforcement Learning (Michael Hu)
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The Art of Reinforcement Learning (Michael Hu)



WATCH THE FOLLOWING VIDEO

https://www.youtube.com/watch?v=NFo9v_yKQXA



How to solve

full RL problem?



When we have:

Reinforcement Learning: An Introduction (Richard S. Sutton and Andrew G. Barto)



OPTIMAL VALUE AND POLICY



Reinforcement Learning: An Introduction (Richard S. Sutton and Andrew G. Barto)



WATCH THE FOLLOWING VIDEO

https://www.youtube.com/watch?v=_j6pvGEchWU

https://www.youtube.com/watch?v=_j6pvGEchWU


When we don’t have:

Reinforcement Learning: An Introduction (Richard S. Sutton and Andrew G. Barto)



Lin, Baihan. "Reinforcement learning and bandits for speech and language processing: 

Tutorial, review and outlook." Expert Systems with Applications 238 (2024): 122254.





WATCH THE FOLLOWING VIDEO

https://www.youtube.com/watch?v=bpUszPiWM7o

https://www.youtube.com/watch?v=bpUszPiWM7o


https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Lin, Baihan. "Reinforcement learning and bandits for speech and language processing: 

Tutorial, review and outlook." Expert Systems with Applications 238 (2024): 122254.

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html










WATCH THE FOLLOWING VIDEO

https://www.youtube.com/watch?v=AJiG3ykOxmY



Reinforcement Learning: An Introduction (Richard S. Sutton and Andrew G. Barto)
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