Reinforcement Learning
Framework




Main branches of machine learning

® These types of machine
Ieamins tosks are all

important, and they aren’t
mu-hm]l‘t_.’ exclusive. }

Machine learning

(3) In fact, the best
exoamples of artiticial
in’cel\isenee combine many
different techniques. |




MAIN BRANCHES OF MACHINE LEARNING ff/
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Supervised learning (SL) is the task of learning from labeled data. In SL, a human

decides which data to collect and how to label it. _
Unsupervised learning (UL) is the task of learning from unlabeled data. Even though f
data no longer needs labeling, the methods used by the computer to gather data still (‘)])
need to be designed by 2 human. TSNS 2
Reinforcement learning (RL) is the task of learning through trial and error. In this type

)T of task, no human labels data, and no human collects or explicitly designs the

collection of data. — V&
Y = 4@(@
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Standard (supervised) Reinforcement learning:

machine learning:

* Datais noti.i.d.: previous outputs influence
future inputs!
* Ground truth answer is not known, only know
if we succeeded or failed
f(x)
more generally, we know the reward

given D = {(x;,¥:)}

learn to predict y from x ~ Yy :

Usually assumes:

* i.i.d. data
* known ground truth outputs in training

supervised
learning

reinforcement
learning




“Almost all young people
working on Artificial
Intelligence look around
and say - What's pogular?
Statistical learning. So, I'll
do that. That's exactly the
way to kill yourself
scientifically!” /

D

Marvin Minsky during his course called
Society of Mind at MIT in 2011
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https://www.technologyreview.com/2018/12/19/138508/mighty-mouse
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Computer Science

Engineering

Mathematics






D AT RS T< Q ///

Al Planning | 50
—s. Optimization (X)) >

Learns from experience 7

Generalization l( SX TR X

Delayed Consequences \\ X ; ‘ﬁ' J/

‘
| X[ X X(E)E

Exploration




\ / F'Ewa
. R,

rd

p—




How should we define
the boundary between
agent and environment?
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ENVIRONMENT AND AGENT

— (D an agent is the
decision-maki
portion of the code.

ﬂ L—S
- v
() The environment is everything outside the
agent In this case thaot includes network
lotencies, the motor’s noise, the camera noise,

ond so on. This Moy seem counterintuitive ot
first, but it helps in understanding the algorithms.

Environment



MIT 6.868J The Society of Mind, Fall 2011
P D

MIT OpenCourse\are——rarst -]

1. Introduction to 'The Society of Mind' - 2:05:54
2. Falling In Love - 1:45:55

View full playlist

viAcDVOw5 xpsIBYNJDkU

- = /<t M ARYITN MINSKY



https://www.youtube.com/playlist?list=PLUl4u3cNGP61E-vNcDV0w5xpsIBYNJDkU
https://www.youtube.com/playlist?list=PLUl4u3cNGP61E-vNcDV0w5xpsIBYNJDkU
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https: / /rliclub.github.io /posts /three-dogmas-of-reinforcement-learning

ree Dogmas of Reinforcement Learnlng
August 6, 2024 - Arash Alikhani


https://rljclub.github.io/posts/three-dogmas-of-reinforcement-learning

(" ENVIRONMENT AND AGENT

Deterministic Grid World Stochastic Grid World




Observation Space

State: complete description of Qst_eryqtiq“r_w_; partial description
the state of the world (no - or e state of the world.
hig,dféninformation).
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Actlon Space
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l%fscrete finitenumberof '} Continuous: infinite number of

e

_ possible: actlons \\ ~ possible actions
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Deep RL Course



REWARD HYPOTHESIS

-

N

The Reward Hypothesis

“...all of what we mean by g@ais and purposes \can be well thought of as_ maximization of the

expected value cumulative sum of a received scalar signal (reward)”

-- Sutton (2004)
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RO -

R(T) = @l-l-”l"@;-l-rt+3—l-7“t+4—l-. ..

\ Return: cumulative reward
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Worth Now Worth Next Step Worth In Two Steps



= Tl + Va2 Y T3 + Y T+

Return: cumulative reward Gamma: discount rate

O’Q\J

RO =Y B

=

Trajectory (read Tau)
Sequence of states and actions




The three internal steps that every
reinforcement learning agent goes through

\9@ v C %’)

() reinforcement learning
means, well, agen’cs have
to learn someﬁ'ﬂna.

[

® ah agents evaluate
their behm_:jgr.

(3) One of the
coolest ’chings o¥
reinforcement
learning s agen’cs
interact with the
problem. |

—

Interact

Observation



The Policy m: the agent’s brain

Policy mt: is the brain of our Agent, it's the function that tell us what
action to take given the state we are.
— So it defines the agent behavior at a given time.

N - <« @

State % (State) > Action -

- — L)tn






 (Left: 0.1, Right: 0.%,
Jump: QZu




Process the environment goes through

(=) ﬁnajijj, the ’ .
S as a consequence of agent’s actions
reoction is pasaed. _
back to the agent. O eavironment
Observation, . receives the
—— Environment action selected,
Transition I by the agent.
(4) The new state and Action
reward are passed
{hmugh o. filter: some
pmblerns dont let the rue
stote of the environment <
be perceived by the agent!
(3)...the environment _
will 4ransition 4o o. new | () pepending on the current

environment state, ond the F—

internal stote.
ageni-’s chosen oction... p——



The reinforcement learning cycle

: Observation
and reward

D The cycle begins with
the a.gen’c obser\ﬁng the

environment. |

Transition

Improve

(® Finally, the T
environment transitions Action

ond its internal state l

(liKelEj) changes as o. L _ (@ The agent .
consequence of the (2) It then sends an action “5 ntuses ths
previous stote ond the ‘o the environment in an obsewahon_ and reward to
agen’c’s oction. Then} the &&W ‘o control itin o aﬂem to IIT\PT‘O\’B ok the task.

c_}jc[e TGPGCLJCS. favoroble m.\lj.



Actions: muselecantractions Actions: motor current or torque

Observations: sight, smell Observations: camera images
Rewards: food Rewards: task success measure (e.g.,
- -

running speed)

Jwhat to purchase '<
Observations: inventory Ievels?



Reinforcement learning with image generation

“a dolphin riding a bike‘V \

Kevin Black*, Michael Janner#, Yilun Du, llya Kostrikov, Sergey Levine. Training Diffusion Models with Reinforcement Learning. 2023.
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State Action Next



Experience tuples

Agent Environment Time step
1L e
Actiona + | State s t
T » Rewardr
] I
Action a’ 4 | State s’ t+17
T » Rewardr’
. 1 —
Action a” 4 | State s” t+2
T » Reward r”

1
State 5™ (T t+3

Vaject (}Cg

Experiences:
t (s,ar s)
t+1, (s, a; ", s")
t+2, (s a’ " s")




supervised learning reinforcement learning

':_I Agent ||

[Dbject la be|] state reward action

E ¢ -Rnl [ )
P Environment

input: x

pick your
output: y input: sy at each time step own actions
data: D = {(x;,yi)} ~_ output: a; at each time step /
goal: fp(Xi) ~ yi someone gives

this to you
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Value of state s Expected return If the agent start
at state s

For each state,
the state-value function outputs
the expected return
if the agent starts in that state
and then follows the policy forever after.




The Action Value Function

Action Value Function: calculate the value of state-action pair.

= “We didn't fill
\\ ? | \./4 7 [ I / 7 r::-;/)6 AN _’_:'-S {1 .
g V ' N all the state-actions

pair for the example
of Action-value function

2 o @K

— Ol
Deep RL Course




Q- (s(a)

lue of state-action Expecteéd return If the agent starts and chooses action
pair s; at state s a
*

For each state and action,
the action-value function outputs
the expected return
if the agent starts in that state
and takes the action
and then follows the
policy forever after.



GCridworld Display Cridworld Display

VALUES AFTER Q-VALUES AFTER 100 ITERATIONS
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Living reward =0
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Gridworld Display Cridworld Display
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VALUES AFTER 100 ITERATIONS
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Cridworld Display

Cridworld Display
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VALUES AFTER 100 ITERATIONS

Discount = 0.9
Living reward =0

QO-VALUES AFTER 100 ITERATIONS
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Noise = 0.2
iscount = 0.9




WHAT WE HAVE LEARNED SO FAR?

* what is reinforcem

—

* reinforcement learning framework & basic concepts

& significance

° agent

* environment

* state /observation

° action

* reward

* policy

* model

. eéf_ei’ience/t[oliectory/horizon -
* discount factor

* state value function

—

* action value function




Challenges of
Reinforcement Learning
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Type of tasks 2
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Contmumg }ask that coritlnue
forer or (no terminal state)

@ Deep RLCourse >
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Offline Solution Online Learning
— — N—




Deep reinforcement learning agents will explore!
Can you afford mistakes?

(D oh look! stocks are
the lowest -thel.jwe been
in 5enrs! I

~ (3 1 wonder what woul &
happen it | sell all my
positions now?

(@ Yep, give it a try,

sell an'!!
Se




On-polic
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(a) online reinforcement learning  (b) off-policy reinforcement learning
—/)

rollout data {(S;,a;,s;,7;)} rollout data {(s;.a;.s!.r;)}

|
7Tk upc;ate
Tk+1

%

e
5 @ L&
r a |

|
learn
7.‘- }:-\ deployment /

data collected ONKE == == == == = |
with any policy training phase




Model-free Model-based




| EXPLORATION VS. EXPLOITATION DILEMMA




Exploration/ Exploitation tradeoff

Exploration: trying random Exploitation: using known
actions in order to find more information to maximize the
information about the reward.

environment.




CRED] T PROBLEM

Yehave wove
like this

Behave even wove
like this




REWARD ENGINEERING PROBLEM




1CO

Manage an investment portfolio

Reward: efciency,,

Control a power station
Make a robot walk

Play video or board games

Reward: distance, speed.

q_,_--—_

v v v Vv

If the goal is to learn via interaction, these are\ﬁlTrﬂitpmment learning problems
(Irrespective of which solution you use)



GENERALIZATION PROBLEM

Train and Test Distribution Graphical Models

Example Benchmarks

Singleton Environments

IID Generalisation Environments

OOD Generlisation Environments

MDP

-

CMDP

Train = Test

- @@ 7
R..(¢) = p.(c)

Train Distribution = Test Distribution

R..(c)#R.(c)

kn Distribution # Test Distribution




SAMPLE EFFICIENCY PROBLEM
— |\
=,

6000 ;ﬂ‘%\

DDPG -
: (— PPok—
5 — SQL
BN TD3 (concurrent)
Q
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@ 2000
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Value-based Policy-based

continuous action




Two approaches to find optimal policy »*:

Policy-Based methods: train the agent Value-Based methods: train the agent to
to learn which action to take, given a learn which state is more valuable and
state. take the action that leads to it.




Two approaches to find optimal policy »*

Policy-Based methods:

- Train directly the policy.
- Our policy is a Neural Network.
- No value function.

.Lchep



—I» State) —) Values of State Action pair = n(State) h =

State

Two approaches to find optimal policy »*

Value-Based methods:

- Don't train the policy.
- Our policy is a function defined by hand.
- Instead train a value-function that is a Neural Network.

« ®» O 1
« ®» O 01 _)
« ® » O O 2

m(s) = arg max Qx(s,




state

reward

Environment

action



Model-free

Policy-based
Golicy Gradienf) ‘ g

Model-based




WHAT WE HAVE LEARNED SO FAR?

* episodic vs continuing reinforcement learning

* offline vs online learning

* safe reinforcement learning

* on-policy vs off-policy vs offline reinforcement learning

>

* model-free vs model-base reinforcement learning

exploration vs. exploitation dilemma

credit assignment problem

reward engineering problem

—

generalization problem
bty

sample efficiency problem

((vqlue-bos licy-base vs actor-critic method






observation

agent state S

action

observation

reward R,

environment state sg

action




Yntains all useful

An information state (a.k.4 (Markov state))
information from the history: .. -

A state S5¢ is Markov if and only if

1P> S| =P[Si1 | Si..... ]
= A =






End

p=0.2 p=102

>
p =04 p =08

]t Hcom 3

OuLfﬂde




A Markov chain can be defined as a tuple of @Z( —p

* S is afinite set of states called the state space.

_
Room 1 Room 2 Room 3 Outside Found item End
(N0 (08 ) 0 0
- 0.2 0 0.4 0.4
D _ Room 3 0 0.2 0 0
Outside 0 0.2 0 0.8
Found item 0 0 0 0
End \ O 0 0 0

* Episode I: (Room I, Room 2, Room 3, Found item, End)
* Episode 2: (Room 3, Found item, End) S

* Episode 3: (Room 2, Outside, Room 2, Room 3, Found item, End)
* Episode 4: (Outside, Outside, Outside, ... )



We can define the Markov reward process as a tuple (S, P, R)
=

* Sis a finite set of states called the state space.

* P is the dynamics function (or transition model) of the environment, where P (s'|s) = P[SH[ =

S; = 5] specify the probability of environment transition into successor state s” when in current
state s.

e R 1s areward function of the environm

S!

Sy = 5] 1s the reward signal provided

b’?

by the environment when the agent is in stat



Room 1

p=10.2

Room 2

End

p=108

r=1()

Room 3
\_

\
R




* Episode |: (Room 1, Room 2, Room 3, Found item, End)
[Total rewards = =t="1=1=+10=+6= 7.0)

? Episode 2: (Room 3_Found ﬂ%:p_ﬁg/
(Total rewards = —1 + 10 =9.0

; Episode 3: (Room 2, Outside, Room 2, Room 3. Found item, End)
Total rewards= -1+ 1—-1—-1+104+0=28.0

) Episode 4: (Outside, Outside, Outside . . .)
Total rewards=1+1+4+--- =00



We can define the MDP as a tufle ( @

= -

P, R):
M —

. S 1S 1nite—se ~states—called the F}‘[ﬂ_t__ﬁ_SpﬂC@-

* (A is a finite set of actions called the action space.

e P is the dynamics function (or transition model) of the environment, where P(s'|s,a) = P[
Sie1 =588 =s,A = a] specify the probability of environment transition into successor state

s’ when in current state s and take action a.
* R is areward function of the environment; R(s, a) = E [R;

S, =5,A; = a] is the reward signal

provided by the environment when the agent is in state s and taking action a.



Go to room1 Go to room?2

Search

U =10

r =\ Go inside
r=20

Go outside
r=-—1

e §={Room |, Room 2, Room 3, Outside, Found item}"%/

Found
item

A= {Gotorooml, Go to room2, Go to room3, Go outside. Go insiderSearch}

e R={-1, —2,+1,0,+10}8/




Go to room1
Go to room?2
Go to room3
Go outside
Go 1nside
Search

Go to rooml
Go to room?2
Go to rooms3
Go outside
Go 1mnside
Search

(

Room 1 Room 2 Room 3 Outside

1.0

o O OO O

Room 1 Room 2 Room 3 Outside

0.6 0.4

oo O O O

0
1.0
0
0
1.0
1.0

0
1.0
0
0
1.0
1.0

0
0

0
0
0.2
0
0
0

0
0

0
0.8
1.0

0
0.0

Found 1tem

0

o R e B e R e B

Found

s R e B e B e B e R -

1tem

\

\

&
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Go to room] Go to room?2

Go to room3 Search

1 = 10.0 10 0.0
= — - =
-~ \=/

1

T =

Go outside

r=20 Go inside

r=1>0

discount rate v = 0.9

Go outside

N r=-1

V. (Room 2) =033 % (ﬂ 0.9 % 1.0)}+ 0.33 % (—1 + 0.9 % 10.0)

+0.33% (04 0.9%5.0)
- ————

;

D33 —[.140.33%«8+0.33%x4.5




Qv —>

On(s.a) = EH[Gf

< — —
= R(s,a)+ y Z P(s'|s. c::/) y: m(a'|s")Ox (s, Q’J foralls € S,a € A

K{IES La’EA ' —?‘

Sr :S,Ar :EI]




Go to rooml1 Go to room2
r=—2

|
Gotor 3 /L\ Search
o to room A 100 Search 0.0
r=—1 U r =10
- =8.0

a Go to room?2
1

=

Go outside
r=10
r = 4.0

discount rate v = 0.9

/
Go outside
r=—1

Or(Room 2, Gotorooml)=—-2+4+0.9x%1.0

Q,(Room 2, Gotoroom3)=—1+0.9x%10.0

Q,(Room 2, Go outside) =0+ 0.9 % 5.0

o

Vi (Room 2) = 033 % —1.1 +0.33 %8+ 0.33 x 4.5

= 3.76
——

o




| WATCH THE FOLLOWING VIDEO

-1

}/nforcement . \
 Learning .

https:/ /www.youtube.com /watch2v=NFo9v_yKQXA



How to solve
full RL problem?



When we have:

P(s',r|s,a) =P[S;;1 = s, Ry 1 = 7|S; = s, A = a



| OPTIMAL VALUE AND POLICY

O.(s,a) =max O, (s,a), foralls e S,ae A

aeA

I, if a=argmax Q.(s,a)
Ty (als) =

0, otherwise



evaluation

m

T

T ~» greedy (V)

Improvement




| WATCH THE FOLLOWING VIDEO

THE BELLMAN
EQUATIONS  (RhFart2)

POLICY -+

ITERATION - *~L5h- & ={2]-

https: //www.youtube.com/watch2v=_jépvGEchWU



https://www.youtube.com/watch?v=_j6pvGEchWU

When we don’t have:




Monte-Carlo
V(S:) « V(S:) +a(G — V(5:))

Dynamic Programming
V(S:) ¢ Ex [Res1 + ¥V(Ses1)]




Monte Carlo Approach:

- Calculate the return Gt.
Gt =Rt+1 + Rt+2 + RE+3:..
Gt=1+0+0+0+0+0+ 1+ 1+0+0
Gt=3

-  We can now update V(SO0).

(St) < V(S5t) + a|Gr — V(S4)]

New V(S0) = V(SO) + Ir * [Gt-V(SO)]
New V(S0)=0+0.1*[3 -0]
New V(S0O) =0.3




| WATCH THE FOLLOWING VIDEO

MONTE _ e e (RL Bgrt 3)
CARLQ #*¥owa™
+ M ° , %%

OFF POLICY METHODS

htt

ps:/ /www.youtube.com/watch?v=bpUszPiWM7o



https://www.youtube.com/watch?v=bpUszPiWM7o

Monte-Carlo Temporal-Difference
V(Sg) — V(St) +Q (Gg - V(St)) V(Sg) $ V(Sg) +a (R¢+1 +’YV(S¢+1) >t V(St))

A}

e

® @
S B & . Bl O O O @ ¢
Q O I Q T O @ QOEQOE REOC QEQE ®
) e et ol 23 et
fooN ' SR \ 7 N\ 4
N / | XTI A 05 Ao | J

https: //cs.stanford.edu/people /karpathy /reinforcejs /gridworld td.html



https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

TD Learning Approach:

Temporal Difference Learning: learning at each time step.

V(S:) < V(S) + a|Rip1 + YV (St41) — V(S)]

Discounted value of next
state

New value Former Learning

of state t estimation of Rate
value of state

t |

TD Target




TD Approach:

At the end of one step (State, Action, Reward,
Next State):
-  We have Rt+1 and St+1
- We update V(St):
-  We estimate Gt by adding Rt+1 and
the discounted value of next state.
TD target : Rt+1 + gamma * V(St+1)

V(S¢) < V(St) + alRip1 + 4V (Si+1) — V(Sh)]

Now we continue to interact with this
environment with our updated value function.
By running more and more steps, the agent will
learn to play better and better.




TD Approach:

- We just started to train our Value function
so it returns O value for each state.

- Learningrate (Ir) is 0.1 and our discount
rateis 1 (no discount)

- Our mouse, explore the environment and
take a random action: going left.

- |t gets a+1reward (cheese).




TD Approach:

- We can now update V(S0):
V(St) — V(St) + a[Rt+1 + ’)’V(St+1) — V(St)]

New V(S0)=0+0.1*[1+1*0-0]
The new V(S0) =0.1

So we just updated our value function for State
0.

Now we continue to interact with this
environment with our updated value function.




WATCH THE FOLLOWING VIDEO

TEMPORAL

LEARNING =+t 10 |

(RL Part 4)

https:/ /www.youtube.com /watch2v=AJiG3ykOxmY
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