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Markov Process (MP) & Markov Property

• Markov Process: Set of random variables(states) that have Markov 
Property

• Markov Property: Future states only depend on the current state.

• Example:

if today was rainy, tomorrow is sunny

• In this statement, Only current state(today) is considered for predicting the 
future. 

• A better statement would be: if today was sunny, with the probability of 0.8 
tomorrow is sunny and with probability of 0.2 is rainy. And:

• if today was rainy, with the probability of 0.9 tomorrow is rainy and with 
probability of 0.1 is sunny.



Transition Probability

• The mentioned chances in the previous examples are called transition 
probability.

• A better definition for MP: A set of states the have Markov property 
and with a transition probability they transform to each other



Markov Reward Process (MRP)

• In MP we are only monitoring, and we have no effect on the world.

• If we set a reward for moving from a state to another state (still 
monitoring, we don’t make the move), now this is called MRP.



Markov Decision Process(MDP)

• Now if we make the decisions to make the actions in each state,

It is called MDP. 

• From a state, we take an action, move to a next state and receive a 
reward.

• receiving reward could happen after taking the action, or after taking 
action and moving to a certain next state.



Graphical Models

• Graphical Model is a visualization tool to represent the probabilistic 
relation between random variables.

• Assume 𝑥1, 𝑥2, 𝑥3

• 𝑃(𝑥1, 𝑥2, 𝑥3) = 𝑃 𝑥1|𝑥2, 𝑥3 𝑃 𝑥2 𝑥3 𝑃(𝑥3)



How to Draw its Graphical Model?

𝑥1

𝑥3

𝑥2

𝑃(𝑥1, 𝑥2, 𝑥3) = 𝑃 𝑥1|𝑥2, 𝑥3 𝑃 𝑥2, 𝑥3 = 𝑃 𝑥1|𝑥2, 𝑥3 𝑃 𝑥2 𝑥3 𝑃(𝑥3)

•  First draw the random variables as nodes nodes: 



How to Draw its Graphical Model?

𝑥1

𝑥3

𝑥2

𝑃(𝑥1, 𝑥2, 𝑥3) = 𝑃 𝑥1|𝑥2, 𝑥3 𝑃 𝑥2, 𝑥3 = 𝑃 𝑥1|𝑥2, 𝑥3 𝑃 𝑥2 𝑥3 𝑃(𝑥3)

• 𝑃(𝑥1 𝑥2, 𝑥3  since x1is conditioned on x2 and x3, we draw two edges from x3 and x2to x1.



How to Draw its Graphical Model?

𝑃(𝑥1, 𝑥2, 𝑥3) = 𝑃 𝑥1|𝑥2, 𝑥3 𝑃 𝑥2, 𝑥3 = 𝑃 𝑥1|𝑥2, 𝑥3 𝑃 𝑥2 𝑥3 𝑃(𝑥3)

• 𝑃 𝑥2 𝑥3 , since x2is conditioned on x3, we draw two edges from x3 and x2.

𝑥1

𝑥3

𝑥2



What if x1is independent of x2given x3?

𝑥1

𝑥3

𝑥2

Then we have: 



Visualizing MDPs using Graphical Models

• 𝑃 𝑠0, 𝑎0, 𝑠1, 𝑎1, 𝑠2 = 𝑃 𝑠2  𝑠0, 𝑎0, 𝑠1, 𝑎1)𝑃 𝑎1 𝑠0, 𝑎0, 𝑠1 𝑃 𝑠1 𝑠0, 𝑎0 ×

 𝑃(𝑎0|𝑠0)𝑃(𝑠0)

Due to Markovian Property: Next State only depends on current state, We have:

𝑃 𝑠2  𝑠0, 𝑎0, 𝑠1, 𝑎1) = 𝑃 𝑠2  𝑠1, 𝑎1) 

Taking an action only depends on current state not the past states, We have:

𝑃 𝑎1 𝑠0, 𝑎0, 𝑠1 = 𝑃 𝑎1  𝑠1



Visualizing MDPs using Graphical Models

• Thus we have:

𝑃 𝑠0, 𝑎0, 𝑠1, 𝑎1, 𝑠2 = 𝑃 𝑠2  𝑠1, 𝑎1)𝑃 𝑎1 𝑠1 𝑃 𝑠1 𝑠0, 𝑎0  𝑃(𝑎0|𝑠0)𝑃(𝑠0)

Rearranging and using π a s  instead of 𝑃(𝑎|𝑠) : 𝑃(𝑠0) 𝜋(𝑎0|𝑠0) 𝑃 𝑠1 𝑠0, 𝑎0  𝜋 𝑎1 𝑠1  𝑃 𝑠2  𝑠1, 𝑎1)

𝑠1

𝑎0

𝑠0 𝑠2

𝑎1

Assuming that the 𝑃(𝑠0) is fixed:



State Value Functions

Example: In State A, With the probability of 0.8 we go right and 0.2 we go down

For the first trajectory we have: 



State Value Functions

𝑉 𝐴 = 𝑅 𝜏2 = −1 + 1 + 1 + 1 = 2

For the Second trajectory we have: 



State Value Functions

Calculating the V(A) according to the given Trajectories:



Optimal State Value Functions



Summary



State-Action value function



Bellman equations- Value Function

𝑉 𝑠 = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉(𝑠′)

𝑎0

𝑟0

𝑠0

𝑎1

𝑟1

𝑠1

𝑎2

𝑟2

𝑠2

𝑎3

𝑟3

𝑠3 𝑠4

𝑉 𝑠2 = 𝑅 𝑠2, 𝑎2, 𝑠3 + 𝛾𝑉(𝑠3)



Bellman equations- Value Function

• What if the Environment is Stochastic?

𝑉𝜋(𝑠) = ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎)[𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ∗ 𝑉𝜋 𝑠′ ]



How to Calculate values if we have this?

𝑃 𝑠2 𝑠1, 𝑎1 = 1.0
𝑆0 𝑆1

𝑆2

𝑆3



Then we have

𝑉 𝑠1 = 0.7 𝑅 𝑠1, 𝑎1, 𝑠2 + 𝛾 ∗ 𝑉 𝑠3 + 0.3 𝑅 𝑠1, 𝑎1, 𝑠3 + 𝛾 ∗ 𝑉 𝑠3

𝑉 𝑠1 = 𝑃 𝑠2 𝑠1, 𝑎1 𝑅 𝑠1, 𝑎1, 𝑠2 + 𝛾 ∗ 𝑉 𝑠3 + 𝑃 𝑠3 𝑠1, 𝑎1 𝑅 𝑠1, 𝑎1, 𝑠3 + 𝛾 ∗ 𝑉 𝑠3



What if the policy is stochastic?

• Write the bellman equation for this MDP

𝜋 𝑠2 𝑠1, 𝑎1 = 1.0
𝑆0 𝑆1

𝑆2

𝑆3



Take another Expectation!



Summary



Bellman Equations Q-Functions

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ∗ 𝑄(𝑠′, 𝑎′)

𝑎0

𝑟0

𝑠0

𝑎1

𝑟1

𝑠1

𝑎2

𝑟2

𝑠2

𝑎3

𝑟3

𝑠3 𝑠4

𝑄 𝑠2, 𝑎2 = 𝑅 𝑠2, 𝑎2, 𝑠3 + 𝛾 ∗ 𝑄(𝑠3,𝑎3)



What if We have Stochastic Environment

𝑄𝜋(𝑠, 𝑎) = ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎)[𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑄𝜋 𝑠′, 𝑎′ ]



Stochastic Policy?



But We need Another Expectation

• Two Points

• When We choose the action, Since the action is fix, The Expectation is not 
needed. (we don’t take Expectation w.r.t  a)

• But the a’ is Stochastic So we have to take Expectation



Q function for Stochastic Environment and 
Policy



Summary



Policy Iteration



Policy Iteration Pseudocode 



SWF Environment



• Given the following policy, Calculate State 3 value.

• Which State Will get updated first?

Example



Policy Evaluation



Policy Evaluation

𝑉 4 = 𝑃 𝑠′ = 3, 𝑎 = 𝐿 𝑟 + 𝑉 3 + 𝑃 𝑠′ = 4, 𝑎 = 𝐿 𝑟 + 𝑉 4 +
 𝑃 𝑠′ = 5, 𝑎 = 𝐿 𝑟 + 𝑉 5  

𝑉 4 = 0.5 𝑟 + 0 + 0.3333 0 + 0 + 0.1666 0 + 0 = 0.0

Note: the values will get updated after a full iteration over the Environment so the 

value of the other states remains Zero.



Convergence After 104 iterations!



Another Example

• Given The following policy, Which State Gets updated First?



Policy Evaluation

After Convergence



Policy Improvement

• Take the action that makes the Q(s,a) the maximum:



How to Calculate Q? We only have Values!

Write the Q in terms of V



How to Calculate Q? We only have Values!

Write the Q in terms of V



Policy iteration in a Nutshell



Value Iteration

• SWF environment



Original Method-Mentioned in the class



For SWF Environment

• Initial V(s) = 0

• First iteration

• 𝑉𝑘
∗(𝑠) ← max

𝑎
σ𝑠′ 𝑃𝑠𝑠′(𝑟 + 𝛾𝑉 𝑠′ ∗

𝑘−1)

𝑃56
𝑅  𝑟 + 𝑉0 6 + 𝑃54

𝑅  𝑟 + 𝑉0 4 + 𝑃55
𝑅  𝑟 + 𝑉0 5 =

0.5  1 + 0 + 0.1666  0 + 0 + 0.3333  0 + 0 =  0.5

𝑃56
𝐿  𝑟 + 𝑉0 6 + 𝑃54

𝐿  𝑟 + 𝑉0 4 + 𝑃55
𝐿  𝑟 + 𝑉0 5 =

0.1666  1 + 0 + 0.5  0 + 0 + 0.3333  0 + 0 =  0.1666
≅ 0.17

𝑉1
∗ 5 =  max(0.5,0.17)

𝑉1
∗ 5 = 0.5



For SWF Environment

𝜋∗(𝑠) ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 ෍

𝑠′

𝑃𝑠𝑠′(𝑟 + 𝛾𝑉 𝑠′ ∗
𝑘−1) 𝜋1

∗ 5 = 𝑅𝑖𝑔ℎ𝑡

𝑃45
𝑅  𝑟 + 𝑉0 5 + 𝑃44

𝑅  𝑟 + 𝑉0 4 + 𝑃43
𝑅  𝑟 + 𝑉0 3 =

0.5  0 + 0 + 0.3333  0 + 0 + 0.1666  0 + 0 =  0

𝑃45
𝐿  𝑟 + 𝑉0 5 + 𝑃44

𝐿  𝑟 + 𝑉0 4 + 𝑃43
𝐿  𝑟 + 𝑉0 3 =

0.1666  0 + 0 + 0.3333  0 + 0 + 0.3333  0 + 0 = 0

F𝑟𝑜𝑚 𝑡ℎ𝑖𝑠 𝑝𝑜𝑖𝑛𝑡 𝑤𝑒 
𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒 

𝑡𝑖𝑙𝑙 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛



Second Iteration 

𝑃56
𝑅  𝑟 + 𝑉1 6 + 𝑃54

𝑅  𝑟 + 𝑉1 4 + 𝑃55
𝑅  𝑟 + 𝑉1 5 =

0.5  1 + 0 + 0.1666  0 + 0 + 0.3333  0 + 0.5 =  0.6666

𝑃56
𝐿  𝑟 + 𝑉1 6 + 𝑃54

𝐿  𝑟 + 𝑉1 4 + 𝑃55
𝐿  𝑟 + 𝑉1 5 =

0.1666  1 + 0 + 0.5  0 + 0 + 0.3333  0 + 0.5 =  0.33325
≅ 0.3333

𝑉2
∗ 5 =  max(0.6666,0.3333)

𝑉2
∗ 5 = 0.6666

𝜋2
∗ 5 = 𝑅𝑖𝑔ℎ𝑡

𝑃45
𝑅  𝑟 + 𝑉1 5 + 𝑃44

𝑅  𝑟 + 𝑉1 4 + 𝑃43
𝑅  𝑟 + 𝑉1 3 =

0.5  0 + 0.5 + 0.3333  0 + 0 + 0.1666  0 + 0 =  0.25

𝑃45
𝐿  𝑟 + 𝑉1 5 + 𝑃44

𝐿  𝑟 + 𝑉1 4 + 𝑃43
𝐿  𝑟 + 𝑉1 3 =

0.1666  0 + 0.5 + 0.3333  0 + 0 + 0.3333  0 + 0 = 0.08333

𝑉2
∗ 4 =  max(0.25,0.08333)

𝑉2
∗ 4 = 0.25

𝜋2
∗ 4 = 𝑅𝑖𝑔ℎ𝑡



A little bit different in terms of notation

• Initial 𝑉0(𝑠) = 0

For an initial policy: 

𝑄1 𝑠 = 5, 𝑎 = 𝑅 = 𝑃56
𝑅  𝑟 + 𝑉0 6 + 𝑃54

𝑅  𝑟 + 𝑉0 4 + 𝑃55
𝑅  𝑟 + 𝑉0 5 =

0.5  1 + 0 + 0.1666  0 + 0 + 0.3333  0 + 0 =  0.5

𝑄1 𝑠 = 5, 𝑎 = 𝐿 = 𝑃56
𝐿  𝑟 + 𝑉0 6 + 𝑃54

𝐿  𝑟 + 𝑉0 4 + 𝑃55
𝐿  𝑟 + 𝑉0 5 =

0.1666  1 + 0 + 0.5  0 + 0 + 0.3333  0 + 0 =  0.1666 ≅ 0.17



Second Iteration

• Updating the Policy based on Q values

• Recalculating V using new Policy 

𝑉1 5 = 𝑃 𝑠′ = 6, 𝑎 = 𝑅 𝑟 + 𝑉0 6 + 𝑃 𝑠′ = 5, 𝑎 = 𝑅 𝑟 + 𝑉0 5 +
 𝑃 𝑠′ = 4, 𝑎 = 𝑅 𝑟 + 𝑉 4  

𝑉1 5 = 0.5 1 + 0 + 0.3333 0 + 0 + 0.1666 0 + 0 = 0.5

𝑉1 4 = 𝑃 𝑠′ = 5, 𝑎 = 𝐿 𝑟 + 𝑉0 5 + 𝑃 𝑠′ = 4, 𝑎 = 𝐿 𝑟 + 𝑉0 4 +
 𝑃 𝑠′ = 3, 𝑎 = 𝐿 𝑟 + 𝑉0 3  

𝑉1 4 = 0.5 0 + 0 + 0.3333 0 + 0 + 0.1666 0 + 0 = 0.0



Second Iteration

• Updating Q Values Based on new V

𝑄2 𝑠 = 5, 𝑎 = 𝑅 = 𝑃56
𝑅  𝑟 + 𝑉1 6 + 𝑃55

𝑅  𝑟 + 𝑉1 5 + 𝑃54
𝑅  𝑟 + 𝑉1 4 =

0.5  1 + 0 + 0.3333  0 + 0.5 + 0.1666  0 + 0 =  0.6665 ≅ 0.67

𝑄2 𝑠 = 5, 𝑎 = 𝐿 = 𝑃56
𝐿  𝑟 + 𝑉1 6 + 𝑃54

𝐿  𝑟 + 𝑉1 4 + 𝑃55
𝐿  𝑟 + 𝑉1 5 =

0.1666  1 + 0 + 0.5  0 + 0 + 0.3333  0 + 0.5 =  0.3332 ≅ 0.33



Second Iteration

• Updating Q Values Based on new V

𝑄2 𝑠 = 4, 𝑎 = 𝑅 = 𝑃45
𝑅  𝑟 + 𝑉1 5 + 𝑃44

𝑅  𝑟 + 𝑉1 4 + 𝑃43
𝑅  𝑟 + 𝑉1 3 =

0.5  0 + 0.5 + 0.3333  0 + 0 + 0.1666  0 + 0 =  0.25

𝑄2 𝑠 = 4, 𝑎 = 𝐿 = 𝑃45
𝐿  𝑟 + 𝑉1 5 + 𝑃44

𝐿  𝑟 + 𝑉1 4 + 𝑃43
𝐿  𝑟 + 𝑉1 3 =

0.1666  0 + 0.5 + 0.3333  0 + 0 + 0.3333  0 + 0 =  0.0833 ≅ 0.08



• Key note: in value iteration there is no need to reach the optimal Value 
to update the policy.

• You can update the policy with each iteration.



Sampling and Bootstrapping Methods

• Monte Carlo (MC)

1. First visit

2. Every visit

• Temporal Difference Learning (TD Learning)

1. SARSA

2. Q Learning



Monte Carlo (MC)



Bootstrapping

• Bootstrapping doesn’t wait till the end of the episodes to update the 
values.

• It calculates the new immediately after receiving the reward.

• Which one of the DP and MC Does bootstrap?



Bootstrapping



TD Methods

• Value update formula:



TD Methods

• The Same goes for Q functions



Epsilon Greedy Policy

𝜋 𝑎 𝑆𝑡  ←

1 −  𝜀 +
𝜀

𝐴 𝑆𝑡
 𝑖𝑓 𝑎 =  𝐴∗

𝜀

𝐴 𝑆𝑡
 𝑖𝑓 𝑎 ≠ 𝐴∗



SARSA



Q Learning



Q Learning Example

• +0: Going to a state with no cheese in it.

• +1: Going to a state with a small cheese in it.

• +10: Going to the state with the big pile of cheese.

• -10: Going to the state with the poison and thus dying.

• +0: If we take more than five steps.



Step 1



Step 2: Choose an action using the Epsilon Greedy Strategy

• Because epsilon is big (= 1.0), I take a random action. In this case, I go right.



Step 3:  Perform action At, get Rt+1 and St+1



Step 4: Update 𝑄(𝑆𝑡, 𝐴𝑡)

Q(initial state, Right) = 0 + 0.1*( 1 + 0.99*0 – 0)  = 0.1



Time step 2- Step 2:Choose an action using the Epsilon Greedy 
Strategy

• I take a random action again, since epsilon=0.99 is big. (Notice we decay epsilon a little bit because, as the 
training progress, we want less and less exploration).

• I took the action ‘down’. This is not a good action since it leads me to the poison.



Step 3:  Perform action At, get Rt+1 and St+1

• 𝐁𝐞𝐜𝐚𝐮𝐬𝐞 𝐈 𝐚𝐭𝐞 𝐩𝐨𝐢𝐬𝐨𝐧, 𝐈 𝐠𝐞𝐭 𝐑𝐭+𝟏 = −𝟏𝟎, 𝐚𝐧𝐝 𝐈 𝐝𝐢𝐞.



Step 4: Update 𝑄(𝑆𝑡, 𝐴𝑡)

Q(State 2, Down) = 0 + 0.1*( -10 + 0.99*0 – 0)  = -1



N Step TD

• Instead of only using the reward of a single state-action, you can take multiple actions

• To do that you need to calculate the N step Returns



N Step Returns



N Step SARSA
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